These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29609318)

  • 21. Simulation study on the detection of size, shape and position of three different scatterers using non-standard time domain time inverse Maxwell's algorithm.
    Chakrabarti K; Cole JB
    Opt Express; 2010 Mar; 18(5):4148-57. PubMed ID: 20389428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boundary conditions in an integral approach to scattering.
    Arnoldus HF
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3063-71. PubMed ID: 17106462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear optics.
    Minck RW; Terhune RW; Wang CC
    Appl Opt; 1966 Oct; 5(10):1595-612. PubMed ID: 20057594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-opals interaction modeling by direct numerical solution of Maxwell's equations.
    Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M
    Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ray-based optical visualisation of complex birefringent structures including energy transport.
    Poy G; Žumer S
    Soft Matter; 2019 May; 15(18):3659-3670. PubMed ID: 30972389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maxwell's macroscopic equations, the energy-momentum postulates, and the Lorentz law of force.
    Mansuripur M; Zakharian AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026608. PubMed ID: 19391864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalization of the optical theorem for light scattering from a particle at a planar interface.
    Small A; Fung J; Manoharan VN
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2519-25. PubMed ID: 24323012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping.
    Kim JU; Choi H; Park Y; Shin J
    Biomed Opt Express; 2018 Aug; 9(8):3883-3897. PubMed ID: 30338162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave Analysis of Scattered and Absorbed Powers of Semiconductor and Metamaterial Cylinder Structures.
    Bučinskas J; Pomarnacki R; Plonis D; Paulikas Š; Tušinskis G; Nickelson L
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30650596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiscale coupled Maxwell's equations and polarizable molecular dynamics simulation based on charge response kernel model.
    Yamada A
    J Chem Phys; 2020 Mar; 152(9):094110. PubMed ID: 33480736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A low-order unstructured-mesh approach for computational electromagnetics in the time domain.
    El Hachemi M; Hassan O; Morgan K; Rowse D; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):445-69. PubMed ID: 15306503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: application to the study of a radar dome.
    Belkhir A; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056701. PubMed ID: 18643189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element analysis of electromagnetic waves in two-dimensional transformed bianisotropic media.
    Liu Y; Gralak B; Guenneau S
    Opt Express; 2016 Nov; 24(23):26479-26493. PubMed ID: 27857381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mie scattering by a uniaxial anisotropic sphere.
    Geng YL; Wu XB; Li LW; Guan BR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056609. PubMed ID: 15600781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A software framework for solving problems of bioelectricity applying high-order finite elements.
    Cole M; Sachse FB; Weinstein DM; Parker S; Kirby RM
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():821-4. PubMed ID: 17271803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution of the inhomogeneous Maxwell's equations using a Born series.
    Krüger B; Brenner T; Kienle A
    Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scale transformation of Maxwell's equations and scattering by an elliptic cylinder.
    Ferrari LA
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1285-90. PubMed ID: 21643414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near- to far-field transformation in the aperiodic Fourier modal method.
    Rook R; Pisarenco M; Setija ID
    Appl Opt; 2013 Oct; 52(28):6962-8. PubMed ID: 24085211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging.
    Marques D; Miranda A; Silva AG; Munro PRT; DE Beule PAA
    J Microsc; 2018 May; 270(2):150-155. PubMed ID: 29323420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A derivation of Maxwell's equations using the Heaviside notation.
    Hampshire DP
    Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2134):. PubMed ID: 30373937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.