These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29609357)

  • 1. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric Pollution Monitoring in Urban Area by Employing a 450-nm Lidar System.
    Kong Z; Liu Z; Zhang L; Guan P; Li L; Mei L
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique.
    Mei L; Guan P; Yang Y; Kong Z
    Opt Express; 2017 Aug; 25(16):A628-A638. PubMed ID: 29041035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.
    Mei L; Brydegaard M
    Opt Express; 2015 Nov; 23(24):A1613-28. PubMed ID: 26698808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the Ångström exponent.
    Mei L; Kong Z; Ma T
    Opt Express; 2018 Nov; 26(24):31942-31956. PubMed ID: 30650773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.
    Sun G; Qin L; Hou Z; Jing X; He F; Tan F; Zhang S
    Opt Express; 2018 Mar; 26(6):7423-7436. PubMed ID: 29609297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing.
    Mei L; Ma T; Kong Z; Gong Z; Li H
    Appl Opt; 2019 Nov; 58(32):8981-8992. PubMed ID: 31873680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of atmospheric NO
    Mei L; Guan P; Kong Z
    Opt Express; 2017 Oct; 25(20):A953-A962. PubMed ID: 29041305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer.
    Mei L; Li Y; Kong Z; Ma T; Zhang Z; Fei R; Cheng Y; Gong Z; Liu K
    Appl Opt; 2020 Aug; 59(22):6729-6736. PubMed ID: 32749378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme.
    Mei L; Guan P
    Opt Lett; 2017 Sep; 42(18):3562-3565. PubMed ID: 28914902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor.
    Yu J; Cheng Y; Kong Z; Song J; Chang Y; Liu K; Gong Z; Mei L
    Opt Express; 2024 Jan; 32(3):3046-3061. PubMed ID: 38297536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric CO
    Larsson J; Bood J; Xu CT; Yang X; Lindberg R; Laurell F; Brydegaard M
    Opt Express; 2019 Jun; 27(12):17348-17358. PubMed ID: 31252945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an all-day portable polarization lidar system based on the division-of-focal-plane scheme for atmospheric polarization measurements.
    Kong Z; Ma T; Zheng K; Cheng Y; Gong Z; Hua D; Mei L
    Opt Express; 2021 Nov; 29(23):38512-38526. PubMed ID: 34808903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible, near-infrared dual-polarization lidar based on polarization cameras: system design, evaluation and atmospheric measurements.
    Kong Z; Yu J; Gong Z; Hua D; Mei L
    Opt Express; 2022 Aug; 30(16):28514-28533. PubMed ID: 36299045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of atmospheric aerosols and mixing layer by LIDAR.
    Angelini F; Barnaba F; Landi TC; Caporaso L; Gobbi GP
    Radiat Prot Dosimetry; 2009 Dec; 137(3-4):275-9. PubMed ID: 19843545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of the planetary boundary layer height by employing the Scheimpflug lidar technique and the covariance wavelet transform method.
    Mei L; Li L; Liu Z; Fei R; Lu Q; Chen K; Gong Z
    Appl Opt; 2019 Oct; 58(29):8013-8020. PubMed ID: 31674355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.
    Ben-David A
    Appl Opt; 1999 Apr; 38(12):2616-24. PubMed ID: 18319835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical distribution of ambient aerosol extinctive properties during haze and haze-free periods based on the Micro-Pulse Lidar observation in Shanghai.
    Liu Q; He Q; Fang S; Guang Y; Ma C; Chen Y; Kang Y; Pan H; Zhang H; Yao Y
    Sci Total Environ; 2017 Jan; 574():1502-1511. PubMed ID: 27575426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle profiling and classification by a dual-band continuous-wave lidar system.
    Zhao G; Malmqvist E; Török S; Bengtsson PE; Svanberg S; Bood J; Brydegaard M
    Appl Opt; 2018 Dec; 57(35):10164-10171. PubMed ID: 30645222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.