These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29609463)

  • 1. STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands.
    Nguyen HA; Banerjee P; Nguyen D; Lyding JW; Gruebele M; Jain PK
    J Phys Chem Lett; 2018 Apr; 9(8):1970-1976. PubMed ID: 29609463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation-dependent imaging of electronically excited quantum dots.
    Nguyen D; Goings JJ; Nguyen HA; Lyding J; Li X; Gruebele M
    J Chem Phys; 2018 Feb; 148(6):064701. PubMed ID: 29448801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution.
    Myroshnychenko V; Nishio N; García de Abajo FJ; Förstner J; Yamamoto N
    ACS Nano; 2018 Aug; 12(8):8436-8446. PubMed ID: 30067900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy.
    Fujiyoshi Y; Nemoto T; Kurata H
    Ultramicroscopy; 2017 Apr; 175():116-120. PubMed ID: 28236741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.
    Abid I; Bohloul A; Najmaei S; Avendano C; Liu HL; Péchou R; Mlayah A; Lou J
    Nanoscale; 2016 Apr; 8(15):8151-9. PubMed ID: 27029770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical switching of nematic liquid crystal films driven by localized surface plasmons.
    Quint MT; Delgado S; Paredes JH; Nuno ZS; Hirst LS; Ghosh S
    Opt Express; 2015 Mar; 23(5):6888-95. PubMed ID: 25836908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing optical plasmons on a single nanometer scale.
    Cohen M; Shavit R; Zalevsky Z
    Sci Rep; 2014 Feb; 4():4096. PubMed ID: 24556874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.
    Böckmann H; Gawinkowski S; Waluk J; Raschke MB; Wolf M; Kumagai T
    Nano Lett; 2018 Jan; 18(1):152-157. PubMed ID: 29266954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes.
    Fujita D; Onishi K; Niori N
    Microsc Res Tech; 2004 Aug; 64(5-6):403-14. PubMed ID: 15549699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of resonant quenching of surface plasmons by quantum dots.
    Romero MJ; van de Lagemaat J; Mora-Sero I; Rumbles G; Al-Jassim MM
    Nano Lett; 2006 Dec; 6(12):2833-7. PubMed ID: 17163714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling Localized Plasmons via an Atomistic Approach: Attainment of Site-Selective Activation inside a Single Molecule.
    Mahapatra S; Schultz JF; Li L; Zhang X; Jiang N
    J Am Chem Soc; 2022 Feb; 144(5):2051-2055. PubMed ID: 34978804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Field Spectral Response of Optically Excited Scanning Tunneling Microscope Junctions Probed by Single-Molecule Action Spectroscopy.
    Böckmann H; Müller M; Hammud A; Willinger MG; Pszona M; Waluk J; Wolf M; Kumagai T
    J Phys Chem Lett; 2019 May; 10(9):2068-2074. PubMed ID: 30964304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength-Dependent Optical Force Imaging of Bimetallic Al-Au Heterodimers.
    Tumkur T; Yang X; Zhang C; Yang J; Zhang Y; Naik GV; Nordlander P; Halas NJ
    Nano Lett; 2018 Mar; 18(3):2040-2046. PubMed ID: 29436231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale interference patterns of gap-mode multipolar plasmonic fields.
    Tanaka Y; Sanada A; Sasaki K
    Sci Rep; 2012; 2():764. PubMed ID: 23097686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.
    Yu A; Li S; Wang H; Chen S; Wu R; Ho W
    Nano Lett; 2018 May; 18(5):3076-3080. PubMed ID: 29660286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced Force Mapping of Plasmonic Nanostructures.
    Tumkur TU; Yang X; Cerjan B; Halas NJ; Nordlander P; Thomann I
    Nano Lett; 2016 Dec; 16(12):7942-7949. PubMed ID: 27960494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography.
    Tseng HY; Lee CK; Wu SY; Chi TT; Yang KM; Wang JY; Kiang YW; Yang CC; Tsai MT; Wu YC; Chou HY; Chiang CP
    Nanotechnology; 2010 Jul; 21(29):295102. PubMed ID: 20601768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focusing short-wavelength surface plasmons by a plasmonic mirror.
    Ogut E; Yanik C; Kaya II; Ow-Yang C; Sendur K
    Opt Lett; 2018 May; 43(9):2208-2211. PubMed ID: 29714791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.