These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2960984)

  • 21. Metabolism in frog retinal pigment epithelium of docosahexaenoic and arachidonic acids derived from rod outer segment membranes.
    Chen H; Anderson RE
    Exp Eye Res; 1993 Sep; 57(3):369-77. PubMed ID: 8224024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photic history modifies susceptibility to retinal damage in albino trout.
    Allison WT; Hallows TE; Johnson T; Hawryshyn CW; Allen DM
    Vis Neurosci; 2006; 23(1):25-34. PubMed ID: 16597348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhodopsin phosphorylation in developing normal and degenerative mouse retinas.
    Shuster TA; Farber DB
    Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):264-8. PubMed ID: 3003003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Aggregation of rhodopsin molecules during damaging exposure of photoreceptor membranes to light].
    Pogozheva ID; Kuznetsov VA; Fedorovich IB; Livshits VA; Ostrovskiĭ MA
    Biofizika; 1981; 26(4):692-700. PubMed ID: 6269656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinal uptake of intravitreally injected Hsc/Hsp70 and its effect on susceptibility to light damage.
    Yu Q; Kent CR; Tytell M
    Mol Vis; 2001 Mar; 7():48-56. PubMed ID: 11239246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rod outer segment lipids in vitamin A-adequate and -deficient rats.
    Organisciak DT; Wang HM; Noell WK; Plantner JJ; Kean EL
    Exp Eye Res; 1986 Jan; 42(1):73-82. PubMed ID: 2937648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Sulfhydryl group distribution along the axis of the rod outer segment in the frog].
    Derevianchenko TG; Fedorovich IB; Ostrovskiĭ MA
    Tsitologiia; 1985 Oct; 27(10):1197-9. PubMed ID: 3878019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The distribution of actin in cultured normal and dystrophic rat pigment epithelial cells during the phagocytosis of rod outer segments.
    Chaitin MH; Hall MO
    Invest Ophthalmol Vis Sci; 1983 Jul; 24(7):821-31. PubMed ID: 6345446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness).
    Chen J; Simon MI; Matthes MT; Yasumura D; LaVail MM
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2978-82. PubMed ID: 10549660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid-protein modifications during ascorbate-Fe2+ peroxidation of photoreceptor membranes: protective effect of melatonin.
    Guajardo MH; Terrasa AM; Catalá A
    J Pineal Res; 2006 Oct; 41(3):201-10. PubMed ID: 16948780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of the retinal effects of light damage and high illuminance light history.
    Penn JS; Thum LA
    Prog Clin Biol Res; 1987; 247():425-38. PubMed ID: 3685037
    [No Abstract]   [Full Text] [Related]  

  • 32. Docosahexaenoic acid metabolism and inherited retinal degenerations.
    Bazan NG; Scott BL
    Prog Clin Biol Res; 1987; 247():103-18. PubMed ID: 2891142
    [No Abstract]   [Full Text] [Related]  

  • 33. Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells.
    Raoul W; Keller N; Rodéro M; Behar-Cohen F; Sennlaub F; Combadière C
    J Neuroimmunol; 2008 Jul; 198(1-2):56-61. PubMed ID: 18508131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective retinal pigment epithelial cell lipid metabolism and remodeling conserves photoreceptor docosahexaenoic acid following phagocytosis.
    Rodriguez de Turco EB; Parkins N; Ershov AV; Bazan NG
    J Neurosci Res; 1999 Aug; 57(4):479-86. PubMed ID: 10440897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lens epithelium-derived growth factor promotes photoreceptor survival in light-damaged and RCS rats.
    Machida S; Chaudhry P; Shinohara T; Singh DP; Reddy VN; Chylack LT; Sieving PA; Bush RA
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1087-95. PubMed ID: 11274090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Docosahexaenoic acid utilization during rod photoreceptor cell renewal.
    Gordon WC; Bazan NG
    J Neurosci; 1990 Jul; 10(7):2190-202. PubMed ID: 2142959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of calcium channel blocker diltiazem on photoreceptor degeneration in the rhodopsin Pro213His rat.
    Bush RA; Kononen L; Machida S; Sieving PA
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2697-701. PubMed ID: 10937585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The identification of a new biochemical alteration early in the differentiation of visual cells in inherited retinal degeneration.
    Bazan NG
    Prog Clin Biol Res; 1989; 314():191-215. PubMed ID: 2692027
    [No Abstract]   [Full Text] [Related]  

  • 39. [Rhodopsin fluorescence in the retinal rods of the bull at -196 degrees C].
    Sineshchekov VA; Litvin FF
    Dokl Akad Nauk SSSR; 1985; 281(6):1471-4. PubMed ID: 4028929
    [No Abstract]   [Full Text] [Related]  

  • 40. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.