These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 29610098)
1. Examining De Novo Transcriptome Assemblies via a Quality Assessment Pipeline. Ghaffari N; Arshad OA; Jeong H; Thiltges J; Criscitiello MF; Yoon BJ; Datta A; Johnson CD IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):494-505. PubMed ID: 29610098 [TBL] [Abstract][Full Text] [Related]
2. Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture. Ghaffari N; Sanchez-Flores A; Doan R; Garcia-Orozco KD; Chen PL; Ochoa-Leyva A; Lopez-Zavala AA; Carrasco JS; Hong C; Brieba LG; Rudiño-Piñera E; Blood PD; Sawyer JE; Johnson CD; Dindot SV; Sotelo-Mundo RR; Criscitiello MF Sci Rep; 2014 Nov; 4():7081. PubMed ID: 25420880 [TBL] [Abstract][Full Text] [Related]
3. Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei). Peng J; Wei P; Zhang B; Zhao Y; Zeng D; Chen X; Li M; Chen X BMC Genomics; 2015 Nov; 16():1006. PubMed ID: 26607692 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique. Li C; Weng S; Chen Y; Yu X; Lü L; Zhang H; He J; Xu X PLoS One; 2012; 7(10):e47442. PubMed ID: 23071809 [TBL] [Abstract][Full Text] [Related]
5. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Smith-Unna R; Boursnell C; Patro R; Hibberd JM; Kelly S Genome Res; 2016 Aug; 26(8):1134-44. PubMed ID: 27252236 [TBL] [Abstract][Full Text] [Related]
6. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Johnson LK; Alexander H; Brown CT Gigascience; 2019 Apr; 8(4):. PubMed ID: 30544207 [TBL] [Abstract][Full Text] [Related]
7. Comparative performance of transcriptome assembly methods for non-model organisms. Huang X; Chen XG; Armbruster PA BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550 [TBL] [Abstract][Full Text] [Related]
8. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms. Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927 [TBL] [Abstract][Full Text] [Related]
9. Challenges and advances for transcriptome assembly in non-model species. Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057 [TBL] [Abstract][Full Text] [Related]
10. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. Cerveau N; Jackson DJ BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328 [TBL] [Abstract][Full Text] [Related]
11. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers. Amin S; Prentis PJ; Gilding EK; Pavasovic A BMC Res Notes; 2014 Aug; 7():488. PubMed ID: 25084827 [TBL] [Abstract][Full Text] [Related]
12. Improved annotation with de novo transcriptome assembly in four social amoeba species. Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409 [TBL] [Abstract][Full Text] [Related]
13. Comparing de novo and reference-based transcriptome assembly strategies by applying them to the blood-sucking bug Rhodnius prolixus. Marchant A; Mougel F; Mendonça V; Quartier M; Jacquin-Joly E; da Rosa JA; Petit E; Harry M Insect Biochem Mol Biol; 2016 Feb; 69():25-33. PubMed ID: 26005117 [TBL] [Abstract][Full Text] [Related]
14. Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis. Malik L; Almodaresi F; Patro R Bioinformatics; 2018 Oct; 34(19):3265-3272. PubMed ID: 29746620 [TBL] [Abstract][Full Text] [Related]
15. SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing. Yu Y; Wei J; Zhang X; Liu J; Liu C; Li F; Xiang J PLoS One; 2014; 9(1):e87218. PubMed ID: 24498047 [TBL] [Abstract][Full Text] [Related]
16. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. Nakasugi K; Crowhurst R; Bally J; Waterhouse P PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631 [TBL] [Abstract][Full Text] [Related]
17. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. Tulin S; Aguiar D; Istrail S; Smith J Evodevo; 2013; 4():16. PubMed ID: 23731568 [TBL] [Abstract][Full Text] [Related]
18. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Vijay N; Poelstra JW; Künstner A; Wolf JB Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089 [TBL] [Abstract][Full Text] [Related]
19. Single-molecule long-read sequencing facilitates shrimp transcriptome research. Zeng D; Chen X; Peng J; Yang C; Peng M; Zhu W; Xie D; He P; Wei P; Lin Y; Zhao Y; Chen X Sci Rep; 2018 Nov; 8(1):16920. PubMed ID: 30446694 [TBL] [Abstract][Full Text] [Related]
20. STAble: a novel approach to de novo assembly of RNA-seq data and its application in a metabolic model network based metatranscriptomic workflow. Saggese I; Bona E; Conway M; Favero F; Ladetto M; Liò P; Manzini G; Mignone F BMC Bioinformatics; 2018 Jul; 19(Suppl 7):184. PubMed ID: 30066630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]