These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 29610213)
21. Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. Bai Y; Yang J; Zarrella TM; Zhang Y; Metzger DW; Bai G J Bacteriol; 2014 Feb; 196(3):614-23. PubMed ID: 24272783 [TBL] [Abstract][Full Text] [Related]
22. Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. Gundlach J; Krüger L; Herzberg C; Turdiev A; Poehlein A; Tascón I; Weiss M; Hertel D; Daniel R; Hänelt I; Lee VT; Stülke J J Biol Chem; 2019 Jun; 294(24):9605-9614. PubMed ID: 31061098 [TBL] [Abstract][Full Text] [Related]
23. RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP. Kellenberger CA; Chen C; Whiteley AT; Portnoy DA; Hammond MC J Am Chem Soc; 2015 May; 137(20):6432-5. PubMed ID: 25965978 [TBL] [Abstract][Full Text] [Related]
24. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Gundlach J; Herzberg C; Kaever V; Gunka K; Hoffmann T; Weiß M; Gibhardt J; Thürmer A; Hertel D; Daniel R; Bremer E; Commichau FM; Stülke J Sci Signal; 2017 Apr; 10(475):. PubMed ID: 28420751 [TBL] [Abstract][Full Text] [Related]
25. Onward and [K Pham HT; Turner MS J Bacteriol; 2019 May; 201(10):. PubMed ID: 30858295 [TBL] [Abstract][Full Text] [Related]
26. Cyclic di-AMP Signaling in Bacteria. Stülke J; Krüger L Annu Rev Microbiol; 2020 Sep; 74():159-179. PubMed ID: 32603625 [TBL] [Abstract][Full Text] [Related]
27. Sustained Control of Pyruvate Carboxylase by the Essential Second Messenger Cyclic di-AMP in Bacillus subtilis. Krüger L; Herzberg C; Wicke D; Scholz P; Schmitt K; Turdiev A; Lee VT; Ischebeck T; Stülke J mBio; 2021 Feb; 13(1):e0360221. PubMed ID: 35130724 [TBL] [Abstract][Full Text] [Related]
29. Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. Wang M; Wamp S; Gibhardt J; Holland G; Schwedt I; Schmidtke KU; Scheibner K; Halbedel S; Commichau FM Environ Microbiol; 2022 Sep; 24(9):4466-4488. PubMed ID: 35688634 [TBL] [Abstract][Full Text] [Related]
30. Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. Pham HT; Nhiep NTH; Vu TNM; Huynh TN; Zhu Y; Huynh ALD; Chakrabortti A; Marcellin E; Lo R; Howard CB; Bansal N; Woodward JJ; Liang ZX; Turner MS PLoS Genet; 2018 Aug; 14(8):e1007574. PubMed ID: 30074984 [TBL] [Abstract][Full Text] [Related]
31. Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Gundlach J; Commichau FM; Stülke J Curr Genet; 2018 Feb; 64(1):191-195. PubMed ID: 28825218 [TBL] [Abstract][Full Text] [Related]
32. Cyclic di-AMP homeostasis in bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. Mehne FM; Gunka K; Eilers H; Herzberg C; Kaever V; Stülke J J Biol Chem; 2013 Jan; 288(3):2004-17. PubMed ID: 23192352 [TBL] [Abstract][Full Text] [Related]
33. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense. O'Neal L; Ryu MH; Gomelsky M; Alexandre G J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28264994 [TBL] [Abstract][Full Text] [Related]
34. DarA-the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in Warneke R; Herzberg C; Weiß M; Schramm T; Hertel D; Link H; Stülke J J Bacteriol; 2024 Jul; 206(7):e0019024. PubMed ID: 38832794 [TBL] [Abstract][Full Text] [Related]
35. Functional Analysis of a c-di-AMP-specific Phosphodiesterase MsPDE from Mycobacterium smegmatis. Tang Q; Luo Y; Zheng C; Yin K; Ali MK; Li X; He J Int J Biol Sci; 2015; 11(7):813-24. PubMed ID: 26078723 [TBL] [Abstract][Full Text] [Related]
36. [Activity of cyclic diguanylate (c-di-GMP) in bacteria and the study of its derivatives]. Na LX; Yang ZJ Yao Xue Xue Bao; 2012 Mar; 47(3):307-12. PubMed ID: 22645753 [TBL] [Abstract][Full Text] [Related]
37. Characterization of a diguanylate cyclase from Shewanella woodyi with cyclase and phosphodiesterase activities. Liu N; Pak T; Boon EM Mol Biosyst; 2010 Sep; 6(9):1561-4. PubMed ID: 20467666 [TBL] [Abstract][Full Text] [Related]
38. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Tuckerman JR; Gonzalez G; Sousa EH; Wan X; Saito JA; Alam M; Gilles-Gonzalez MA Biochemistry; 2009 Oct; 48(41):9764-74. PubMed ID: 19764732 [TBL] [Abstract][Full Text] [Related]
39. Atypical cyclic di-AMP signaling is essential for Porphyromonas gingivalis growth and regulation of cell envelope homeostasis and virulence. Moradali MF; Ghods S; Bähre H; Lamont RJ; Scott DA; Seifert R NPJ Biofilms Microbiomes; 2022 Jul; 8(1):53. PubMed ID: 35794154 [TBL] [Abstract][Full Text] [Related]
40. Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Cohen D; Mechold U; Nevenzal H; Yarmiyhu Y; Randall TE; Bay DC; Rich JD; Parsek MR; Kaever V; Harrison JJ; Banin E Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11359-64. PubMed ID: 26305928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]