These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29610304)

  • 1. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane.
    Snyder BER; Böttger LH; Bols ML; Yan JJ; Rhoda HM; Jacobs AB; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4565-4570. PubMed ID: 29610304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites.
    Snyder BER; Bols ML; Rhoda HM; Vanelderen P; Böttger LH; Braun A; Yan JJ; Hadt RG; Babicz JT; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12124-12129. PubMed ID: 30429333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite.
    Rosa A; Ricciardi G; Jan Baerends E
    Inorg Chem; 2010 Apr; 49(8):3866-80. PubMed ID: 20302356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The active site of low-temperature methane hydroxylation in iron-containing zeolites.
    Snyder BE; Vanelderen P; Bols ML; Hallaert SD; Böttger LH; Ungur L; Pierloot K; Schoonheydt RA; Sels BF; Solomon EI
    Nature; 2016 Aug; 536(7616):317-21. PubMed ID: 27535535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes.
    Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI
    Chem Rev; 2018 Mar; 118(5):2718-2768. PubMed ID: 29256242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane Activation by a Mononuclear Copper Active Site in the Zeolite Mordenite: Effect of Metal Nuclearity on Reactivity.
    Heyer AJ; Plessers D; Braun A; Rhoda HM; Bols ML; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    J Am Chem Soc; 2022 Oct; 144(42):19305-19316. PubMed ID: 36219763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-metal ions in zeolites: coordination and activation of oxygen.
    Smeets PJ; Woertink JS; Sels BF; Solomon EI; Schoonheydt RA
    Inorg Chem; 2010 Apr; 49(8):3573-83. PubMed ID: 20380459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
    Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric and electronic structure contributions to function in non-heme iron enzymes.
    Solomon EI; Light KM; Liu LV; Srnec M; Wong SD
    Acc Chem Res; 2013 Nov; 46(11):2725-39. PubMed ID: 24070107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites.
    Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y
    J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C-H Bond.
    Bols ML; Hallaert SD; Snyder BER; Devos J; Plessers D; Rhoda HM; Dusselier M; Schoonheydt RA; Pierloot K; Solomon EI; Sels BF
    J Am Chem Soc; 2018 Sep; 140(38):12021-12032. PubMed ID: 30169036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.
    Zecchina A; Rivallan M; Berlier G; Lamberti C; Ricchiardi G
    Phys Chem Chem Phys; 2007 Jul; 9(27):3483-99. PubMed ID: 17612716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis.
    Rhoda HM; Heyer AJ; Snyder BER; Plessers D; Bols ML; Schoonheydt RA; Sels BF; Solomon EI
    Chem Rev; 2022 Jul; 122(14):12207-12243. PubMed ID: 35077641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?
    Ansari A; Rajaraman G
    Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5.
    Hammond C; Forde MM; Ab Rahim MH; Thetford A; He Q; Jenkins RL; Dimitratos N; Lopez-Sanchez JA; Dummer NF; Murphy DM; Carley AF; Taylor SH; Willock DJ; Stangland EE; Kang J; Hagen H; Kiely CJ; Hutchings GJ
    Angew Chem Int Ed Engl; 2012 May; 51(21):5129-33. PubMed ID: 22488717
    [No Abstract]   [Full Text] [Related]  

  • 18. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity.
    Rhoda HM; Plessers D; Heyer AJ; Bols ML; Schoonheydt RA; Sels BF; Solomon EI
    J Am Chem Soc; 2021 May; 143(19):7531-7540. PubMed ID: 33970624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes.
    Rosa A; Ricciardi G
    Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.