These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29610367)

  • 1. Pathways limiting warming to 1.5°C: a tale of turning around in no time?
    Kriegler E; Luderer G; Bauer N; Baumstark L; Fujimori S; Popp A; Rogelj J; Strefler J; van Vuuren DP
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of Earth system feedbacks on carbon budgets and climate response.
    Lowe JA; Bernie D
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing Non-Carbon Dioxide Removal Mitigation Strategies Could Reduce the Negative Impacts Associated with Large-Scale Reliance on Negative Emissions.
    Ampah JD; Jin C; Liu H; Afrane S; Adun H; Morrow D; Ho DT
    Environ Sci Technol; 2024 Feb; 58(8):3755-3765. PubMed ID: 38285506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation and adaptation emissions embedded in the broader climate transition.
    Lesk C; Csala D; Hasse R; Sgouridis S; Levesque A; Mach KJ; Horen Greenford D; Matthews HD; Horton RM
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2123486119. PubMed ID: 36399549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraints on global temperature target overshoot.
    Ricke KL; Millar RJ; MacMartin DG
    Sci Rep; 2017 Nov; 7(1):14743. PubMed ID: 29116149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much do direct livestock emissions actually contribute to global warming?
    Reisinger A; Clark H
    Glob Chang Biol; 2018 Apr; 24(4):1749-1761. PubMed ID: 29105912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy requirements and carbon emissions for a low-carbon energy transition.
    Slameršak A; Kallis G; O'Neill DW
    Nat Commun; 2022 Nov; 13(1):6932. PubMed ID: 36376312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utility of the historical record for assessing the transient climate response to cumulative emissions.
    Millar RJ; Friedlingstein P
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-Offs between Direct Emission Reduction and Intersectoral Additional Emissions: Evidence from the Electrification Transition in China's Transport Sector.
    Wang Z; Zhang H; Wang B; Li H; Ma J; Zhang B; Zhuge C; Shan Y
    Environ Sci Technol; 2023 Aug; 57(31):11389-11400. PubMed ID: 37343129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments.
    Haszeldine RS; Flude S; Johnson G; Scott V
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy system transformations and carbon emission mitigation for China to achieve global 2 °C climate target.
    Zhao G; Yu B; An R; Wu Y; Zhao Z
    J Environ Manage; 2021 Aug; 292():112721. PubMed ID: 33990013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaching a 1.5°C target: socio-technical challenges for a rapid transition to low-carbon electricity systems.
    Eyre N; Darby SJ; Grünewald P; McKenna E; Ford R
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target.
    Tong D; Zhang Q; Zheng Y; Caldeira K; Shearer C; Hong C; Qin Y; Davis SJ
    Nature; 2019 Aug; 572(7769):373-377. PubMed ID: 31261374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.
    McGlade C; Ekins P
    Nature; 2015 Jan; 517(7533):187-90. PubMed ID: 25567285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation gambles: uncertainty, urgency and the last gamble possible.
    Shue H
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing emissions from agriculture to meet the 2 °C target.
    Wollenberg E; Richards M; Smith P; Havlík P; Obersteiner M; Tubiello FN; Herold M; Gerber P; Carter S; Reisinger A; van Vuuren DP; Dickie A; Neufeldt H; Sander BO; Wassmann R; Sommer R; Amonette JE; Falcucci A; Herrero M; Opio C; Roman-Cuesta RM; Stehfest E; Westhoek H; Ortiz-Monasterio I; Sapkota T; Rufino MC; Thornton PK; Verchot L; West PC; Soussana JF; Baedeker T; Sadler M; Vermeulen S; Campbell BM
    Glob Chang Biol; 2016 Dec; 22(12):3859-3864. PubMed ID: 27185416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling direct air carbon capture and storage in a 1.5 °C climate future using historical analogs.
    Edwards MR; Thomas ZH; Nemet GF; Rathod S; Greene J; Surana K; Kennedy KM; Fuhrman J; McJeon HC
    Proc Natl Acad Sci U S A; 2024 May; 121(20):e2215679121. PubMed ID: 38709924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways for balancing CO
    Walsh B; Ciais P; Janssens IA; Peñuelas J; Riahi K; Rydzak F; van Vuuren DP; Obersteiner M
    Nat Commun; 2017 Apr; 8():14856. PubMed ID: 28406154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When could global warming reach 4°C?
    Betts RA; Collins M; Hemming DL; Jones CD; Lowe JA; Sanderson MG
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):67-84. PubMed ID: 21115513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inter-model assessment of the role of direct air capture in deep mitigation pathways.
    Realmonte G; Drouet L; Gambhir A; Glynn J; Hawkes A; Köberle AC; Tavoni M
    Nat Commun; 2019 Jul; 10(1):3277. PubMed ID: 31332176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.