These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29610517)

  • 1. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut.
    Leth ML; Ejby M; Workman C; Ewald DA; Pedersen SS; Sternberg C; Bahl MI; Licht TR; Aachmann FL; Westereng B; Abou Hachem M
    Nat Microbiol; 2018 May; 3(5):570-580. PubMed ID: 29610517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insight into a new low-affinity xylan binding module from the xylanolytic gut symbiont Roseburia intestinalis.
    Leth ML; Ejby M; Madland E; Kitaoku Y; Slotboom DJ; Guskov A; Aachmann FL; Abou Hachem M
    FEBS J; 2020 May; 287(10):2105-2117. PubMed ID: 31693302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.
    Zhang M; Chekan JR; Dodd D; Hong PY; Radlinski L; Revindran V; Nair SK; Mackie RI; Cann I
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3708-17. PubMed ID: 25136124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans.
    La Rosa SL; Leth ML; Michalak L; Hansen ME; Pudlo NA; Glowacki R; Pereira G; Workman CT; Arntzen MØ; Pope PB; Martens EC; Hachem MA; Westereng B
    Nat Commun; 2019 Feb; 10(1):905. PubMed ID: 30796211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level.
    Despres J; Forano E; Lepercq P; Comtet-Marre S; Jubelin G; Chambon C; Yeoman CJ; Berg Miller ME; Fields CJ; Martens E; Terrapon N; Henrissat B; White BA; Mosoni P
    BMC Genomics; 2016 May; 17():326. PubMed ID: 27142817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A and Roseburia intestinalis XB6B4 from the human intestine.
    Mirande C; Kadlecikova E; Matulova M; Capek P; Bernalier-Donadille A; Forano E; Béra-Maillet C
    J Appl Microbiol; 2010 Aug; 109(2):451-460. PubMed ID: 20105245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Bifidobacterium pseudocatenulatum in Degradation and Consumption of Xylan-Derived Carbohydrates.
    Drey E; Kok CR; Hutkins R
    Appl Environ Microbiol; 2022 Oct; 88(20):e0129922. PubMed ID: 36200766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycan complexity dictates microbial resource allocation in the large intestine.
    Rogowski A; Briggs JA; Mortimer JC; Tryfona T; Terrapon N; Lowe EC; Baslé A; Morland C; Day AM; Zheng H; Rogers TE; Thompson P; Hawkins AR; Yadav MP; Henrissat B; Martens EC; Dupree P; Gilbert HJ; Bolam DN
    Nat Commun; 2015 Jun; 6():7481. PubMed ID: 26112186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species.
    Zeybek N; Rastall RA; Buyukkileci AO
    Carbohydr Polym; 2020 May; 236():116076. PubMed ID: 32172889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus.
    Foley MH; Déjean G; Hemsworth GR; Davies GJ; Brumer H; Koropatkin NM
    J Mol Biol; 2019 Mar; 431(5):981-995. PubMed ID: 30668971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins.
    Hamady ZZR; Farrar MD; Whitehead TR; Holland KT; Lodge JPA; Carding SR
    Microbiology (Reading); 2008 Oct; 154(Pt 10):3165-3174. PubMed ID: 18832322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.
    Tuncil YE; Xiao Y; Porter NT; Reuhs BL; Martens EC; Hamaker BR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the xylan-degrading microbial community from human faeces.
    Chassard C; Goumy V; Leclerc M; Del'homme C; Bernalier-Donadille A
    FEMS Microbiol Ecol; 2007 Jul; 61(1):121-31. PubMed ID: 17391327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential growth of bowel commensal Bacteroides species on plant xylans of differing structural complexity.
    Centanni M; Hutchison JC; Carnachan SM; Daines AM; Kelly WJ; Tannock GW; Sims IM
    Carbohydr Polym; 2017 Feb; 157():1374-1382. PubMed ID: 27987846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393.
    Hong PY; Iakiviak M; Dodd D; Zhang M; Mackie RI; Cann I
    Appl Environ Microbiol; 2014 Apr; 80(7):2084-93. PubMed ID: 24463968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes.
    Dodd D; Moon YH; Swaminathan K; Mackie RI; Cann IK
    J Biol Chem; 2010 Sep; 285(39):30261-73. PubMed ID: 20622018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.
    Tauzin AS; Kwiatkowski KJ; Orlovsky NI; Smith CJ; Creagh AL; Haynes CA; Wawrzak Z; Brumer H; Koropatkin NM
    mBio; 2016 Apr; 7(2):e02134-15. PubMed ID: 27118585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases.
    Cuyvers S; Dornez E; Moers K; Pollet A; Delcour JA; Courtin CM
    Enzyme Microb Technol; 2011 Aug; 49(3):305-11. PubMed ID: 22112516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Glycolytic Versatility of
    Benítez-Páez A; Gómez Del Pulgar EM; Sanz Y
    Front Cell Infect Microbiol; 2017; 7():383. PubMed ID: 28971068
    [No Abstract]   [Full Text] [Related]  

  • 20. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates.
    Ejby M; Fredslund F; Andersen JM; Vujičić Žagar A; Henriksen JR; Andersen TL; Svensson B; Slotboom DJ; Abou Hachem M
    J Biol Chem; 2016 Sep; 291(38):20220-31. PubMed ID: 27502277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.