BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 29611206)

  • 1. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations.
    Gamage D; Thompson M; Sutherland M; Hirotsu N; Makino A; Seneweera S
    Plant Cell Environ; 2018 Jun; 41(6):1233-1246. PubMed ID: 29611206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.
    Tomimatsu H; Tang Y
    J Plant Res; 2016 May; 129(3):365-77. PubMed ID: 27094437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.
    Engineer CB; Hashimoto-Sugimoto M; Negi J; Israelsson-Nordström M; Azoulay-Shemer T; Rappel WJ; Iba K; Schroeder JI
    Trends Plant Sci; 2016 Jan; 21(1):16-30. PubMed ID: 26482956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO
    Santos BM; Balbuena TS
    J Proteomics; 2017 Jan; 150():252-257. PubMed ID: 27677843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis?
    Easlon HM; Carlisle E; McKay JK; Bloom AJ
    Plant Physiol; 2015 Mar; 167(3):793-9. PubMed ID: 25583923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal conductance limited the CO
    Baca Cabrera JC; Hirl RT; Schäufele R; Macdonald A; Schnyder H
    BMC Biol; 2021 Mar; 19(1):50. PubMed ID: 33757496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees.
    Quentin AG; Crous KY; Barton CV; Ellsworth DS
    Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phloem function: a key to understanding and manipulating plant responses to rising atmospheric [CO
    Ainsworth EA; Lemonnier P
    Curr Opin Plant Biol; 2018 Jun; 43():50-56. PubMed ID: 29329037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.
    Ainsworth EA; Rogers A
    Plant Cell Environ; 2007 Mar; 30(3):258-270. PubMed ID: 17263773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a coupled model of photosynthesis and stomatal conductance for estimating plant physiological response to pollution by fine particulate matter (PM
    Yu W; Wang Y; Wang Y; Li B; Liu Y; Liu X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19826-19835. PubMed ID: 29737482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.
    Katul G; Manzoni S; Palmroth S; Oren R
    Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant responses to decadal scale increments in atmospheric CO
    Batke SP; Yiotis C; Elliott-Kingston C; Holohan A; McElwain J
    Planta; 2020 Jan; 251(2):52. PubMed ID: 31950281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of CO2 on the tolerance of photosynthesis to heat stress can be affected by photosynthetic pathway and nitrogen.
    Wang D; Heckathorn SA; Hamilton EW; Frantz J
    Am J Bot; 2014 Jan; 101(1):34-44. PubMed ID: 24355208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere.
    Madhana Sekhar K; Rachapudi VS; Mudalkar S; Reddy AR
    J Photochem Photobiol B; 2014 Aug; 137():21-30. PubMed ID: 24938741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of nitrogen fertilization on wheat leaf photosynthesis under elevated atmospheric CO2 concentration].
    Yu XF; Zhang XC; Guo TW; Yu J
    Ying Yong Sheng Tai Xue Bao; 2010 Sep; 21(9):2342-6. PubMed ID: 21265158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO
    Ikawa H; Chen CP; Sikma M; Yoshimoto M; Sakai H; Tokida T; Usui Y; Nakamura H; Ono K; Maruyama A; Watanabe T; Kuwagata T; Hasegawa T
    Glob Chang Biol; 2018 Mar; 24(3):1321-1341. PubMed ID: 29136323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.