These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29611257)
1. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors. Xie C; Zhen X; Miao Q; Lyu Y; Pu K Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257 [TBL] [Abstract][Full Text] [Related]
2. Semiconducting Photosensitizer-Incorporated Copolymers as Near-Infrared Afterglow Nanoagents for Tumor Imaging. Cui D; Xie C; Li J; Lyu Y; Pu K Adv Healthc Mater; 2018 Sep; 7(18):e1800329. PubMed ID: 30080302 [TBL] [Abstract][Full Text] [Related]
3. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373 [TBL] [Abstract][Full Text] [Related]
4. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810 [TBL] [Abstract][Full Text] [Related]
5. Multimodal Biophotonics of Semiconducting Polymer Nanoparticles. Jiang Y; Pu K Acc Chem Res; 2018 Aug; 51(8):1840-1849. PubMed ID: 30074381 [TBL] [Abstract][Full Text] [Related]
6. Amphiphilic Semiconducting Oligomer for Near-Infrared Photoacoustic and Fluorescence Imaging. Yin C; Zhen X; Zhao H; Tang Y; Ji Y; Lyu Y; Fan Q; Huang W; Pu K ACS Appl Mater Interfaces; 2017 Apr; 9(14):12332-12339. PubMed ID: 28299923 [TBL] [Abstract][Full Text] [Related]
7. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. Zhen X; Xie C; Pu K Angew Chem Int Ed Engl; 2018 Apr; 57(15):3938-3942. PubMed ID: 29527761 [TBL] [Abstract][Full Text] [Related]
8. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329 [TBL] [Abstract][Full Text] [Related]
9. Lanthanide Inorganic Nanoparticles Enhance Semiconducting Polymer Nanoparticles Afterglow Luminescence for In Vivo Afterglow/Magnetic Resonance Imaging. Wei HL; Zhang Q; Deng Z; Guan G; Dong Z; Cao H; Liang P; Lu D; Liu S; Yin X; Song G; Huan S; Zhang XB Anal Chem; 2024 May; 96(19):7697-7705. PubMed ID: 38697043 [TBL] [Abstract][Full Text] [Related]
10. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Jiang Y; Huang J; Zhen X; Zeng Z; Li J; Xie C; Miao Q; Chen J; Chen P; Pu K Nat Commun; 2019 May; 10(1):2064. PubMed ID: 31048701 [TBL] [Abstract][Full Text] [Related]
11. Semiconducting Polymer Nanoparticles with Persistent Near-Infrared Luminescence for In Vivo Optical Imaging. Palner M; Pu K; Shao S; Rao J Angew Chem Int Ed Engl; 2015 Sep; 54(39):11477-80. PubMed ID: 26223794 [TBL] [Abstract][Full Text] [Related]
12. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species. Zhen X; Zhang C; Xie C; Miao Q; Lim KL; Pu K ACS Nano; 2016 Jun; 10(6):6400-9. PubMed ID: 27299477 [TBL] [Abstract][Full Text] [Related]
13. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Zhu J; Chen W; Yang L; Zhang Y; Cheng B; Gu W; Li Q; Miao Q Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318545. PubMed ID: 38247345 [TBL] [Abstract][Full Text] [Related]
14. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699 [TBL] [Abstract][Full Text] [Related]
15. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Jiang Y; Zhao M; Miao J; Chen W; Zhang Y; Miao M; Yang L; Li Q; Miao Q Nat Commun; 2024 Mar; 15(1):2124. PubMed ID: 38459025 [TBL] [Abstract][Full Text] [Related]
16. A novel afterglow nanoreporter for monitoring cancer therapy. Liao S; Wang Y; Li Z; Zhang Y; Yin X; Huan S; Zhang XB; Liu S; Song G Theranostics; 2022; 12(16):6883-6897. PubMed ID: 36276646 [No Abstract] [Full Text] [Related]
17. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy. Zheng X; Wu W; Zheng Y; Ding Y; Xiang Y; Liu B; Tong A Chemistry; 2021 Apr; 27(23):6911-6916. PubMed ID: 33556210 [TBL] [Abstract][Full Text] [Related]
18. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents. Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432 [TBL] [Abstract][Full Text] [Related]
19. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging. Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098 [TBL] [Abstract][Full Text] [Related]
20. Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols. Xie C; Lyu Y; Zhen X; Miao Q; Pu K ACS Appl Bio Mater; 2018 Oct; 1(4):1147-1153. PubMed ID: 34996155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]