These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29611257)

  • 21. Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti-cancer Efficiency.
    Wang Y; Song G; Liao S; Qin Q; Zhao Y; Shi L; Guan K; Gong X; Wang P; Yin X; Chen Q; Zhang XB
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19779-19789. PubMed ID: 34233057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies.
    Wang J; Li J; Yu J; Zhang H; Zhang B
    ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic Afterglow Nanoparticles in Bioapplications.
    Shen H; Liao S; Li Z; Wang Y; Huan S; Zhang XB; Song G
    Chemistry; 2023 Jul; 29(42):e202301209. PubMed ID: 37222343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Organic Afterglow Protheranostic Nanoassembly.
    He S; Xie C; Jiang Y; Pu K
    Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics.
    Xu C; Huang J; Jiang Y; He S; Zhang C; Pu K
    Nat Biomed Eng; 2023 Mar; 7(3):298-312. PubMed ID: 36550302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging.
    Zhen X; Tao Y; An Z; Chen P; Xu C; Chen R; Huang W; Pu K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28657119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. H
    Wu L; Ishigaki Y; Hu Y; Sugimoto K; Zeng W; Harimoto T; Sun Y; He J; Suzuki T; Jiang X; Chen HY; Ye D
    Nat Commun; 2020 Jan; 11(1):446. PubMed ID: 31974383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy.
    Pan GY; Jia HR; Zhu YX; Wu FG
    Nanoscale; 2018 Jan; 10(4):2115-2127. PubMed ID: 29326993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging.
    Xiong L; Shuhendler AJ; Rao J
    Nat Commun; 2012; 3():1193. PubMed ID: 23149738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging.
    Xu Y; Yang W; Yao D; Bian K; Zeng W; Liu K; Wang D; Zhang B
    Chem Sci; 2020 Jan; 11(2):419-428. PubMed ID: 32190262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Lipophilic IR-780 Dye-Encapsulated Zwitterionic Polymer-Lipid Micellar Nanoparticle for Enhanced Photothermal Therapy and NIR-Based Fluorescence Imaging in a Cervical Tumor Mouse Model.
    Rajendrakumar SK; Chang NC; Mohapatra A; Uthaman S; Lee BI; Tsai WB; Park IK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29652833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging.
    Liu N; Shi J; Wang Q; Guo J; Hou Z; Su X; Zhang H; Sun X
    Small; 2020 Jul; 16(26):e2001494. PubMed ID: 32510845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics.
    Miao Q; Pu K
    Adv Mater; 2018 Dec; 30(49):e1801778. PubMed ID: 30058244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice.
    Zhu H; Fang Y; Zhen X; Wei N; Gao Y; Luo KQ; Xu C; Duan H; Ding D; Chen P; Pu K
    Chem Sci; 2016 Aug; 7(8):5118-5125. PubMed ID: 30155162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-Infrared Afterglow ONOO
    Zhang L; Wang YC; Liao Y; Zhang Q; Liu X; Zhu D; Feng H; Bryce MR; Ren L
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45574-45584. PubMed ID: 37729542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "Four-In-One" Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging.
    Liu Y; Teng L; Lou XF; Zhang XB; Song G
    J Am Chem Soc; 2023 Mar; 145(9):5134-5144. PubMed ID: 36823697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kiwifruit-like Persistent Luminescent Nanoparticles with High-Performance and in Situ Activable Near-Infrared Persistent Luminescence for Long-Term in Vivo Bioimaging.
    Lin XH; Song L; Chen S; Chen XF; Wei JJ; Li J; Huang G; Yang HH
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41181-41187. PubMed ID: 29111643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photooxidation triggered ultralong afterglow in carbon nanodots.
    Zheng GS; Shen CL; Niu CY; Lou Q; Jiang TC; Li PF; Shi XJ; Song RW; Deng Y; Lv CF; Liu KK; Zang JH; Cheng Z; Dong L; Shan CX
    Nat Commun; 2024 Mar; 15(1):2365. PubMed ID: 38491012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.