BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29611474)

  • 1. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends Towards Future Drugs.
    Khan H; Saeedi M; Nabavi SM; Mubarak MS; Bishayee A
    Curr Med Chem; 2019; 26(13):2389-2406. PubMed ID: 29611474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethiopian Medicinal Plants Traditionally Used for the Treatment of Cancer, Part 2: A Review on Cytotoxic, Antiproliferative, and Antitumor Phytochemicals, and Future Perspective.
    Tesfaye S; Asres K; Lulekal E; Alebachew Y; Tewelde E; Kumarihamy M; Muhammad I
    Molecules; 2020 Sep; 25(17):. PubMed ID: 32899373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants.
    Tariq A; Mussarat S; Adnan M
    J Ethnopharmacol; 2015 Apr; 164():96-119. PubMed ID: 25680842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents.
    Gezici S; Şekeroğlu N
    Anticancer Agents Med Chem; 2019; 19(1):101-111. PubMed ID: 30582485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiplatelet Potential of Plant-Derived Glycosides as Possible Lead Compounds.
    Khan H; Pervaiz A; Kamal MA; Patel S
    Curr Drug Metab; 2018; 19(10):856-862. PubMed ID: 29283063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new kaempferol triglycoside from Fagonia taeckholmiana: cytotoxic activity of its extracts.
    Ibrahim LF; Kawashty SA; El-Hagrassy AM; Nassar MI; Mabry TJ
    Carbohydr Res; 2008 Jan; 343(1):155-8. PubMed ID: 18005952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two new cytotoxic triterpene glycosides from the sea cucumber Holothuria scabra.
    Han H; Yi Y; Xu Q; La M; Zhang H
    Planta Med; 2009 Dec; 75(15):1608-12. PubMed ID: 19598081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxic holostane-type triterpene glycosides from the sea cucumber Pentacta quadrangularis.
    Han H; Xu QZ; Tang HF; Yi YH; Gong W
    Planta Med; 2010 Nov; 76(16):1900-4. PubMed ID: 20425691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review.
    Khan H; Khan Z; Amin S; Mabkhot YN; Mubarak MS; Hadda TB; Maione F
    Biomed Pharmacother; 2017 Sep; 93():498-509. PubMed ID: 28675856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naturally occurring phenylethanoid glycosides: potential leads for new therapeutics.
    Fu G; Pang H; Wong YH
    Curr Med Chem; 2008; 15(25):2592-613. PubMed ID: 18855681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticancer activity of sea cucumber triterpene glycosides.
    Aminin DL; Menchinskaya ES; Pisliagin EA; Silchenko AS; Avilov SA; Kalinin VI
    Mar Drugs; 2015 Mar; 13(3):1202-23. PubMed ID: 25756523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxic activity of medicinal plants of the Kakamega County (Kenya) against drug-sensitive and multidrug-resistant cancer cells.
    Ochwang'i DO; Kimwele CN; Oduma JA; Gathumbi PK; Kiama SG; Efferth T
    J Ethnopharmacol; 2018 Apr; 215():233-240. PubMed ID: 29309859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticancer carbazole alkaloids and coumarins from Clausena plants: A review.
    Huang L; Feng ZL; Wang YT; Lin LG
    Chin J Nat Med; 2017 Dec; 15(12):881-888. PubMed ID: 29329644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkaloids for cancer prevention and therapy: Current progress and future perspectives.
    Mondal A; Gandhi A; Fimognari C; Atanasov AG; Bishayee A
    Eur J Pharmacol; 2019 Sep; 858():172472. PubMed ID: 31228447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review on Anti-Cancer Activity in Wild Plants of the Middle East.
    Mayzlish-Gati E; Fridlender M; Nallathambi R; Selvaraj G; Nadarajan S; Koltai H
    Curr Med Chem; 2018; 25(36):4656-4670. PubMed ID: 28685674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The analgesic potential of glycosides derived from medicinal plants.
    Khan H; Pervaiz A; Intagliata S; Das N; Nagulapalli Venkata KC; Atanasov AG; Najda A; Nabavi SM; Wang D; Pittalà V; Bishayee A
    Daru; 2020 Jun; 28(1):387-401. PubMed ID: 32060737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel acylated steroidal glycosides from Caralluma tuberculata induce caspase-dependent apoptosis in cancer cells.
    Waheed A; Barker J; Barton SJ; Khan GM; Najm-Us-Saqib Q; Hussain M; Ahmed S; Owen C; Carew MA
    J Ethnopharmacol; 2011 Oct; 137(3):1189-96. PubMed ID: 21820042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some progress on the chemistry of natural bioactive terpenoids from Chinese medicinal plants.
    Zhou BN
    Mem Inst Oswaldo Cruz; 1991; 86 Suppl 2():219-26. PubMed ID: 1842005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis and Anti-cancer Drug Discovery: The Power of Medicinal Fungi and Plants.
    Wong JH; Sze SCW; Ng TB; Cheung RCF; Tam C; Zhang KY; Dan X; Chan YS; Cho WC; Ng CCW; Waye MMY; Liang W; Zhang J; Yang J; Ye X; Lin J; Ye X; Wang H; Liu F; Chan DW; Ngan HYS; Sha O; Li G; Tse R; Tse TF; Chan H
    Curr Med Chem; 2018; 25(40):5613-5630. PubMed ID: 28730971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C21 steroidal glycosides from the roots of Cynanchum saccatum.
    Zhang M; Rao LL; Xiang C; Li BC; Li P
    Steroids; 2015 Sep; 101():28-36. PubMed ID: 26048447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.