BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2961151)

  • 1. Reversible pH-induced dissociation of glucose dehydrogenase from Bacillus megaterium. II. Kinetics and mechanism.
    Maurer E; Pfleiderer G
    Z Naturforsch C J Biosci; 1987; 42(7-8):907-15. PubMed ID: 2961151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and functional aspects of the reversible dissociation and denaturation of glucose dehydrogenase.
    Pauly HE; Pfleiderer G
    Biochemistry; 1977 Oct; 16(21):4599-604. PubMed ID: 20937
    [No Abstract]   [Full Text] [Related]  

  • 3. An ultracentrifuge study on the self-association of glucose dehydrogenase from Bacillus megaterium.
    Schubert D; Maurer E; Boss K; Pfleiderer G
    Hoppe Seylers Z Physiol Chem; 1984 Dec; 365(12):1445-9. PubMed ID: 6441770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine modification of glucose dehydrogenase from Bacillus megaterium. Effect of tetranitromethane on the enzyme in the tetrameric and monomeric state.
    Fröschle M; Ulmer W; Jany KD
    Eur J Biochem; 1984 Aug; 142(3):533-40. PubMed ID: 6432532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I: Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium.
    Hilt W; Pfleiderer G; Fortnagel P
    Biochim Biophys Acta; 1991 Jan; 1076(2):298-304. PubMed ID: 1900201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated prediction of secondary, tertiary and quaternary structure of glucose dehydrogenase.
    Hönes J; Jany KD; Pfleiderer G; Wagner AF
    FEBS Lett; 1987 Feb; 212(2):193-8. PubMed ID: 3102279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation, dissociation and unfolding of glucose dehydrogenase during urea denaturation.
    Mendoza-Hernández G; Minauro F; Rendón JL
    Biochim Biophys Acta; 2000 May; 1478(2):221-31. PubMed ID: 10825533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium.
    Mitamura T; Urabe I; Okada H
    Eur J Biochem; 1989 Dec; 186(1-2):389-93. PubMed ID: 2513190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited proteolysis of glucose dehydrogenase from Bacillus megaterium by proteinase K.
    Jany KD; Nitsche E
    Hoppe Seylers Z Physiol Chem; 1983 Jul; 364(7):839-44. PubMed ID: 6413354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchimeric assistance in the intramolecular reaction of glucose-dehydrogenase-polyethylene glycol NAD conjugate.
    Nakamura A; Urabe I; Okada H
    J Biol Chem; 1986 Dec; 261(36):16792-4. PubMed ID: 3097012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability-increasing mutants of glucose dehydrogenase.
    Nagao T; Makino Y; Yamamoto K; Urabe I; Okada H
    FEBS Lett; 1989 Aug; 253(1-2):113-6. PubMed ID: 2503396
    [No Abstract]   [Full Text] [Related]  

  • 12. Mutations that significantly change the stability, flexibility and quaternary structure of the l-lactate dehydrogenase from Bacillus megaterium.
    Kotik M; Zuber H
    Eur J Biochem; 1993 Jan; 211(1-2):267-80. PubMed ID: 8425537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bovine liver glucose dehydrogenase: isolation and characterization.
    Campbell DP; Carper WR; Thompson RE
    Arch Biochem Biophys; 1982 Apr; 215(1):289-301. PubMed ID: 7092232
    [No Abstract]   [Full Text] [Related]  

  • 14. Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium.
    Jany KD; Ulmer W; Fröschle M; Pfleiderer G
    FEBS Lett; 1984 Jan; 165(1):6-10. PubMed ID: 6420184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation and in vitro reconstitution of bovine liver uridine diphosphoglucose dehydrogenase. The paired subunit nature of the enzyme.
    Jaenicke R; Rudolph R; Feingold DS
    Biochemistry; 1986 Nov; 25(23):7283-7. PubMed ID: 3099833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid sequence of the K-peptide generated by limited proteolysis of glucose dehydrogenase from Bacillus megaterium by proteinase K1.
    Jany KD; Nitsche E
    Arch Biochem Biophys; 1984 Feb; 229(1):355-8. PubMed ID: 6422850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [pH-induced inactivation of glycerol dehydrogenase from Bacillus megaterium].
    Ganzhorn A; Scharschmidt M; Pfleiderer G
    Z Naturforsch C Biosci; 1984 Jun; 39(6):575-83. PubMed ID: 6435325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the alkaline tetramer leads to dimer dissociation in liganded human hemoglobin: a laser light-scattering stopped-flow study.
    Flamig DP; Parkhurst LJ
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3814-6. PubMed ID: 20633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose metabolism via the Embden-Meyerhof pathway is not involved in ATP production during spore germination of bacillus megaterium QM B1551. A study with a mutant lacking hexokinase.
    Sano K; Otani M; Umezawa C
    Biochem Biophys Res Commun; 1988 Feb; 151(1):48-52. PubMed ID: 2450541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state.
    Baik SH; Michel F; Aghajari N; Haser R; Harayama S
    Appl Environ Microbiol; 2005 Jun; 71(6):3285-93. PubMed ID: 15933031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.