BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29611893)

  • 1. Comparative proteome analysis of propionate degradation by Syntrophobacter fumaroxidans in pure culture and in coculture with methanogens.
    Sedano-Núñez VT; Boeren S; Stams AJM; Plugge CM
    Environ Microbiol; 2018 May; 20(5):1842-1856. PubMed ID: 29611893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    de Bok FA; Luijten ML; Stams AJ
    Appl Environ Microbiol; 2002 Sep; 68(9):4247-52. PubMed ID: 12200272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans.
    de Bok FA; Roze EH; Stams AJ
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):283-91. PubMed ID: 12448727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Plugge CM; Jiang B; de Bok FA; Tsai C; Stams AJ
    Arch Microbiol; 2009 Jan; 191(1):55-61. PubMed ID: 18795263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Worm P; Stams AJM; Cheng X; Plugge CM
    Microbiology (Reading); 2011 Jan; 157(Pt 1):280-289. PubMed ID: 20884694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Analysis of a Syntrophic Coculture of
    Mollaei M; Suarez-Diez M; Sedano-Nunez VT; Boeren S; Stams AJM; Plugge CM
    Front Microbiol; 2021; 12():708911. PubMed ID: 34950111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures.
    Scholten JC; Conrad R
    Appl Environ Microbiol; 2000 Jul; 66(7):2934-42. PubMed ID: 10877789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism.
    Hidalgo-Ahumada CAP; Nobu MK; Narihiro T; Tamaki H; Liu WT; Kamagata Y; Stams AJM; Imachi H; Sousa DZ
    Environ Microbiol; 2018 Dec; 20(12):4503-4511. PubMed ID: 30126076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.
    Schmidt A; Frensch M; Schleheck D; Schink B; Müller N
    PLoS One; 2014; 9(12):e115902. PubMed ID: 25536080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism.
    Sieber JR; Le HM; McInerney MJ
    Environ Microbiol; 2014 Jan; 16(1):177-88. PubMed ID: 24387041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium.
    Harmsen HJ; Van Kuijk BL; Plugge CM; Akkermans AD; De Vos WM; Stams AJ
    Int J Syst Bacteriol; 1998 Oct; 48 Pt 4():1383-7. PubMed ID: 9828440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens.
    Dong X; Plugge CM; Stams AJ
    Appl Environ Microbiol; 1994 Aug; 60(8):2834-8. PubMed ID: 16349350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of fdh and hyd in Syntrophobacter spp. and Methanospirillum spp. as a diagnostic tool for monitoring anaerobic sludge deprived of molybdenum, tungsten and selenium.
    Worm P; Fermoso FG; Stams AJ; Lens PN; Plugge CM
    Environ Microbiol; 2011 May; 13(5):1228-35. PubMed ID: 21332622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors.
    Chen S; Liu X; Dong X
    Int J Syst Evol Microbiol; 2005 May; 55(Pt 3):1319-1324. PubMed ID: 15879275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.
    Meyer B; Kuehl J; Deutschbauer AM; Price MN; Arkin AP; Stahl DA
    J Bacteriol; 2013 Mar; 195(5):990-1004. PubMed ID: 23264581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community.
    Hamilton JJ; Calixto Contreras M; Reed JL
    PLoS Comput Biol; 2015 Jul; 11(7):e1004364. PubMed ID: 26147299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria.
    Stams AJ; Dong X
    Antonie Van Leeuwenhoek; 1995 Nov; 68(4):281-4. PubMed ID: 8821782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii.
    Liu Y; Balkwill DL; Aldrich HC; Drake GR; Boone DR
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():545-56. PubMed ID: 10319475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM; Hickey RF; Zeikus JG
    Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.