BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29613755)

  • 21. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases.
    Thompson AK; Gray J; Liu A; Hosler JP
    Biochim Biophys Acta; 2012 Jun; 1817(6):955-64. PubMed ID: 22248670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of the ccoGHIS gene products in the biogenesis of the cbb(3)-type cytochrome c oxidase.
    Koch HG; Winterstein C; Saribas AS; Alben JO; Daldal F
    J Mol Biol; 2000 Mar; 297(1):49-65. PubMed ID: 10704306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of the cbb3-type cytochrome oxidase requires specific CcoQ-CcoP interactions.
    Peters A; Kulajta C; Pawlik G; Daldal F; Koch HG
    J Bacteriol; 2008 Aug; 190(16):5576-86. PubMed ID: 18556791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-directed mutagenesis of five conserved residues of subunit i of the cytochrome cbb3 oxidase in Rhodobacter capsulatus.
    Ozturk M; Gurel E; Watmough NJ; Mandaci S
    J Biochem Mol Biol; 2007 Sep; 40(5):697-707. PubMed ID: 17927903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane-spanning and periplasmic segments of CcmI have distinct functions during cytochrome c Biogenesis in Rhodobacter capsulatus.
    Sanders C; Boulay C; Daldal F
    J Bacteriol; 2007 Feb; 189(3):789-800. PubMed ID: 17122341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase.
    Preisig O; Zufferey R; Hennecke H
    Arch Microbiol; 1996 May; 165(5):297-305. PubMed ID: 8661920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: insights into the assembly of Cu(B) of cytochrome c oxidase.
    Thompson AK; Smith D; Gray J; Carr HS; Liu A; Winge DR; Hosler JP
    Biochemistry; 2010 Jul; 49(27):5651-61. PubMed ID: 20524628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus.
    Ekici S; Pawlik G; Lohmeyer E; Koch HG; Daldal F
    Biochim Biophys Acta; 2012 Jun; 1817(6):898-910. PubMed ID: 22079199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The K(C) channel in the cbb3-type respiratory oxygen reductase from Rhodobacter capsulatus is required for both chemical and pumped protons.
    Yıldız GG; Gennis RB; Daldal F; Öztürk M
    J Bacteriol; 2014 May; 196(10):1825-32. PubMed ID: 24563037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential affinity of BsSCO for Cu(II) and Cu(I) suggests a redox role in copper transfer to the Cu(A) center of cytochrome c oxidase.
    Hill BC; Andrews D
    Biochim Biophys Acta; 2012 Jun; 1817(6):948-54. PubMed ID: 21945854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biogenesis of the bacterial
    Durand A; Bourbon ML; Steunou AS; Khalfaoui-Hassani B; Legrand C; Guitton A; Astier C; Ouchane S
    J Biol Chem; 2018 Jan; 293(3):808-818. PubMed ID: 29150446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maturation of
    Öztürk Y; Blaby-Haas CE; Daum N; Andrei A; Rauch J; Daldal F; Koch HG
    Front Microbiol; 2021; 12():720644. PubMed ID: 34566924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Operation of the cbb3-type terminal oxidase in Azotobacter vinelandii.
    Bertsova YV; Bogachev AV
    Biochemistry (Mosc); 2002 Jun; 67(6):622-6. PubMed ID: 12126468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus.
    Buggy J; Bauer CE
    J Bacteriol; 1995 Dec; 177(23):6958-65. PubMed ID: 7592491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions.
    Borsetti F; Tremaroli V; Michelacci F; Borghese R; Winterstein C; Daldal F; Zannoni D
    Res Microbiol; 2005 Aug; 156(7):807-13. PubMed ID: 15946826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb3 cytochrome c oxidase on its function.
    Oh JI
    J Microbiol; 2006 Jun; 44(3):284-92. PubMed ID: 16820758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two conserved non-canonical histidines are essential for activity of the cbb (3)-type oxidase in Rhodobacter capsulatus: non-canonical histidines are essential for cbb (3)-type oxidase activity in R. capsulatus.
    Oztürk M; Mandaci S
    Mol Biol Rep; 2007 Sep; 34(3):165-72. PubMed ID: 17143652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase.
    Bode M; Woellhaf MW; Bohnert M; van der Laan M; Sommer F; Jung M; Zimmermann R; Schroda M; Herrmann JM
    Mol Biol Cell; 2015 Jul; 26(13):2385-401. PubMed ID: 25926683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases.
    Comolli JC; Donohue TJ
    Mol Microbiol; 2004 Feb; 51(4):1193-203. PubMed ID: 14763990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.