These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29613763)

  • 1. Generalized 3D Printing of Graphene-Based Mixed-Dimensional Hybrid Aerogels.
    Tang X; Zhou H; Cai Z; Cheng D; He P; Xie P; Zhang D; Fan T
    ACS Nano; 2018 Apr; 12(4):3502-3511. PubMed ID: 29613763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing lamellar Ti
    Hua T; Guo H; Qin J; Wu Q; Li L; Qian B
    RSC Adv; 2022 Aug; 12(38):24980-24987. PubMed ID: 36199879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance.
    Tagliaferri S; Nagaraju G; Panagiotopoulos A; Och M; Cheng G; Iacoviello F; Mattevi C
    ACS Nano; 2021 Sep; 15(9):15342-15353. PubMed ID: 34491713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.
    Zhu C; Liu T; Qian F; Han TY; Duoss EB; Kuntz JD; Spadaccini CM; Worsley MA; Li Y
    Nano Lett; 2016 Jun; 16(6):3448-56. PubMed ID: 26789202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks.
    Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly compressible 3D periodic graphene aerogel microlattices.
    Zhu C; Han TY; Duoss EB; Golobic AM; Kuntz JD; Spadaccini CM; Worsley MA
    Nat Commun; 2015 Apr; 6():6962. PubMed ID: 25902277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive Manufacturing of Two-Dimensional Conductive Metal-Organic Framework with Multidimensional Hybrid Architectures for High-Performance Energy Storage.
    Zhao J; Zhang Y; Lu H; Wang Y; Liu XD; Maleki Kheimeh Sari H; Peng J; Chen S; Li X; Zhang Y; Sun X; Xu B
    Nano Lett; 2022 Feb; 22(3):1198-1206. PubMed ID: 35080406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications.
    Hassan K; Nine MJ; Tung TT; Stanley N; Yap PL; Rastin H; Yu L; Losic D
    Nanoscale; 2020 Oct; 12(37):19007-19042. PubMed ID: 32945332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Suspended Printing Strategy toward Programmatically Spatial Kevlar Aerogels.
    Cheng Q; Sheng Z; Wang Y; Lyu J; Zhang X
    ACS Nano; 2022 Mar; 16(3):4905-4916. PubMed ID: 35230080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties.
    Zhang Q; Zhang F; Xu X; Zhou C; Lin D
    ACS Nano; 2018 Feb; 12(2):1096-1106. PubMed ID: 29328672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.
    Jakus AE; Shah RN
    J Biomed Mater Res A; 2017 Jan; 105(1):274-283. PubMed ID: 26860782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels.
    Amini M; Hosseini H; Dutta S; Wuttke S; Kamkar M; Arjmand M
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54753-54765. PubMed ID: 37787508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors.
    Song WL; Song K; Fan LZ
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4257-64. PubMed ID: 25654650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications.
    Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CVD Synthesis of 3D-Shaped 3D Graphene Using a 3D-Printed Nickel-PLGA Catalyst Precursor.
    Kondapalli VKR; He X; Khosravifar M; Khodabakhsh S; Collins B; Yarmolenko S; Paz Y Puente A; Shanov V
    ACS Omega; 2021 Nov; 6(43):29009-29021. PubMed ID: 34746590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.
    Jiang L; Lin B; Li X; Song X; Xia H; Li L; Zeng H
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2680-7. PubMed ID: 26761564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation.
    Wang H; Yuan X; Zeng G; Wu Y; Liu Y; Jiang Q; Gu S
    Adv Colloid Interface Sci; 2015 Jul; 221():41-59. PubMed ID: 25983012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.
    Lacey SD; Kirsch DJ; Li Y; Morgenstern JT; Zarket BC; Yao Y; Dai J; Garcia LQ; Liu B; Gao T; Xu S; Raghavan SR; Connell JW; Lin Y; Hu L
    Adv Mater; 2018 Mar; 30(12):e1705651. PubMed ID: 29380891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage.
    Sun H; Mei L; Liang J; Zhao Z; Lee C; Fei H; Ding M; Lau J; Li M; Wang C; Xu X; Hao G; Papandrea B; Shakir I; Dunn B; Huang Y; Duan X
    Science; 2017 May; 356(6338):599-604. PubMed ID: 28495745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.