These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 29613769)

  • 61. Chaperone activity of Cyp18 through hydrophobic condensation that enables rescue of transient misfolded molten globule intermediates.
    Moparthi SB; Fristedt R; Mishra R; Almstedt K; Karlsson M; Hammarström P; Carlsson U
    Biochemistry; 2010 Feb; 49(6):1137-45. PubMed ID: 20070121
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Chaperone-Bound Clients: The Importance of Being Dynamic.
    Hiller S
    Trends Biochem Sci; 2019 Jun; 44(6):517-527. PubMed ID: 30611607
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protein folding while chaperone bound is dependent on weak interactions.
    Wu K; Stull F; Lee C; Bardwell JCA
    Nat Commun; 2019 Oct; 10(1):4833. PubMed ID: 31645566
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chaperone-assisted degradation: multiple paths to destruction.
    Kettern N; Dreiseidler M; Tawo R; Höhfeld J
    Biol Chem; 2010 May; 391(5):481-9. PubMed ID: 20302520
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins.
    Sluchanko NN; Gusev NB
    FEBS J; 2017 May; 284(9):1279-1295. PubMed ID: 27973707
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An overview of the role of molecular chaperones in protein homeostasis.
    Tiroli-Cepeda AO; Ramos CH
    Protein Pept Lett; 2011 Feb; 18(2):101-9. PubMed ID: 21121892
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanochaperone-Based Strategies to Control Protein Aggregation Linked to Conformational Diseases.
    Caballero AB; Gamez P
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):41-52. PubMed ID: 32706460
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional specificity of co-chaperone interactions with Hsp90 client proteins.
    Riggs DL; Cox MB; Cheung-Flynn J; Prapapanich V; Carrigan PE; Smith DF
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):279-95. PubMed ID: 15763706
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Non-cell Autonomous Maintenance of Proteostasis by Molecular Chaperones and Its Molecular Mechanism.
    Takeuchi T
    Biol Pharm Bull; 2018; 41(6):843-849. PubMed ID: 29863073
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insights into the client protein release mechanism of the ATP-independent chaperone Spy.
    He W; Li X; Xue H; Yang Y; Mencius J; Bai L; Zhang J; Xu J; Wu B; Xue Y; Quan S
    Nat Commun; 2022 May; 13(1):2818. PubMed ID: 35595811
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Stress-Activated Chaperones: A First Line of Defense.
    Voth W; Jakob U
    Trends Biochem Sci; 2017 Nov; 42(11):899-913. PubMed ID: 28893460
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computational Analysis of the Chaperone Interaction Networks.
    Kumar A; Rizzolo K; Zilles S; Babu M; Houry WA
    Methods Mol Biol; 2018; 1709():275-291. PubMed ID: 29177666
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein Folding and Mechanisms of Proteostasis.
    Díaz-Villanueva JF; Díaz-Molina R; García-González V
    Int J Mol Sci; 2015 Jul; 16(8):17193-230. PubMed ID: 26225966
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular chaperones and protein quality control: an introduction to the JBC Reviews thematic series.
    Buchner J
    J Biol Chem; 2019 Feb; 294(6):2074-2075. PubMed ID: 30626733
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chaperones and multitasking proteins in the nucleolus: networking together for survival?
    Bański P; Kodiha M; Stochaj U
    Trends Biochem Sci; 2010 Jul; 35(7):361-7. PubMed ID: 20363631
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases.
    Tao YX; Conn PM
    Physiol Rev; 2018 Apr; 98(2):697-725. PubMed ID: 29442594
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanistic Asymmetry in Hsp90 Dimers.
    Flynn JM; Mishra P; Bolon DN
    J Mol Biol; 2015 Sep; 427(18):2904-11. PubMed ID: 25843003
    [TBL] [Abstract][Full Text] [Related]  

  • 79. IIIDB: a database for isoform-isoform interactions and isoform network modules.
    Tseng YT; Li W; Chen CH; Zhang S; Chen JJ; Zhou X; Liu CC
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S10. PubMed ID: 25707505
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity.
    Sharma A; Equbal MJ; Pandey S; Sheikh JA; Ehtesham NZ; Hasnain SE; Chaudhuri TK
    FEBS J; 2017 May; 284(9):1338-1354. PubMed ID: 28296245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.