These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 29614212)
1. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
2. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267 [TBL] [Abstract][Full Text] [Related]
4. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Doehlemann G; Berndt P; Hahn M Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354 [TBL] [Abstract][Full Text] [Related]
5. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
6. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
7. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
8. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Leroch M; Kleber A; Silva E; Coenen T; Koppenhöfer D; Shmaryahu A; Valenzuela PD; Hahn M Eukaryot Cell; 2013 Apr; 12(4):614-26. PubMed ID: 23417562 [TBL] [Abstract][Full Text] [Related]
11. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea. Sharma E; Tayal P; Anand G; Mathur P; Kapoor R Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057 [TBL] [Abstract][Full Text] [Related]
12. Redox systems in Botrytis cinerea: impact on development and virulence. Viefhues A; Heller J; Temme N; Tudzynski P Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673 [TBL] [Abstract][Full Text] [Related]
13. The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation. Feng HQ; Li GH; Du SW; Yang S; Li XQ; de Figueiredo P; Qin QM Environ Microbiol; 2017 May; 19(5):1730-1749. PubMed ID: 27878927 [TBL] [Abstract][Full Text] [Related]
14. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Liu N; Ren W; Li F; Chen C; Ma Z Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777 [TBL] [Abstract][Full Text] [Related]
15. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
16. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Zhang Z; Qin G; Li B; Tian S Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899 [TBL] [Abstract][Full Text] [Related]
17. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. Hou J; Feng HQ; Chang HW; Liu Y; Li GH; Yang S; Sun CH; Zhang MZ; Yuan Y; Sun J; Zhu-Salzman K; Zhang H; Qin QM New Phytol; 2020 Jan; 225(2):930-947. PubMed ID: 31529514 [TBL] [Abstract][Full Text] [Related]
18. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
19. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea. Ren W; Zhang Z; Shao W; Yang Y; Zhou M; Chen C Mol Plant Pathol; 2017 Feb; 18(2):238-248. PubMed ID: 26972592 [TBL] [Abstract][Full Text] [Related]
20. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Doehlemann G; Berndt P; Hahn M Microbiology (Reading); 2006 Sep; 152(Pt 9):2625-2634. PubMed ID: 16946258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]