BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 29614412)

  • 41. Chitosan supramolecularly cross linked with trimesic acid - Facile synthesis, characterization and evaluation of adsorption potential for chromium(VI).
    Bhatt R; Sreedhar B; Padmaja P
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1254-1266. PubMed ID: 28655661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective adsorption of Cr(VI) ions from aqueous solutions using Cr
    Etemadi M; Samadi S; Yazd SS; Jafari P; Yousefi N; Aliabadi M
    Int J Biol Macromol; 2017 Feb; 95():725-733. PubMed ID: 27919817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: equilibrium and kinetic studies.
    Zhang H; Tang Y; Cai D; Liu X; Wang X; Huang Q; Yu Z
    J Hazard Mater; 2010 Sep; 181(1-3):801-8. PubMed ID: 20554386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasonic-assisted synthesis of graphene oxide - fungal hyphae: An efficient and reclaimable adsorbent for chromium(VI) removal from aqueous solution.
    Samuel MS; Subramaniyan V; Bhattacharya J; Chidambaram R; Qureshi T; Pradeep Singh ND
    Ultrason Sonochem; 2018 Nov; 48():412-417. PubMed ID: 30080567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater.
    Pavithra S; Thandapani G; S S; P N S; Alkhamis HH; Alrefaei AF; Almutairi MH
    Chemosphere; 2021 May; 271():129415. PubMed ID: 33460901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution.
    Shan H; Zeng C; Zhao C; Zhan H
    Int J Biol Macromol; 2021 Mar; 172():197-209. PubMed ID: 33453250
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting.
    Qiu J; Wang Z; Li H; Xu L; Peng J; Zhai M; Yang C; Li J; Wei G
    J Hazard Mater; 2009 Jul; 166(1):270-6. PubMed ID: 19117674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient multi-ion adsorption using chitosan-malonic acid film: Enhancement using response surface methodology.
    Gomase V; Doondani P; Saravanan D; Shekhawat A; Jugade R
    Environ Res; 2024 Feb; 242():117762. PubMed ID: 38029812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue.
    Li L; Liu F; Duan H; Wang X; Li J; Wang Y; Luo C
    Colloids Surf B Biointerfaces; 2016 May; 141():253-259. PubMed ID: 26859116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer.
    Hena S
    J Hazard Mater; 2010 Sep; 181(1-3):474-9. PubMed ID: 20627405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced removal of chromium (VI) from wastewater using active carbon derived from Lantana camara plant as adsorbent.
    Ravulapalli S; Kunta R
    Water Sci Technol; 2018 Nov; 78(5-6):1377-1389. PubMed ID: 30388094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd(II) and Cr(VI) from water.
    Li SS; Wang XL; An QD; Xiao ZY; Zhai SR; Cui L; Li ZC
    Int J Biol Macromol; 2020 Jan; 143():640-650. PubMed ID: 31830452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cr(VI) adsorption on the blends of Henna with chitosan microparticles: Experimental and statistical analysis.
    Davarnejad R; Karimi Dastnayi Z; Kennedy JF
    Int J Biol Macromol; 2018 Sep; 116():281-288. PubMed ID: 29729341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and characterization of chitosan-pyrazoloquinoxaline Schiff bases for Cr (VI) removal from wastewater.
    Elhag M; Abdelwahab HE; Mostafa MA; Nasr AZ; El Sadek MM
    Int J Biol Macromol; 2020 Nov; 163():2180-2188. PubMed ID: 32946942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aqueous Cr (VI) removal by Friedel's salt adsorbent prepared from calcium aluminate-rich cementitious materials.
    Jiang Y; Yang Y; Qian G; Hou H; Xi B; Xu Y
    Environ Technol; 2015; 36(13-16):2086-93. PubMed ID: 25798557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous adsorption and reduction of hexavalent chromium on the poly(4-vinyl pyridine) decorated magnetic chitosan biopolymer in aqueous solution.
    Zheng C; Zheng H; Sun Y; Xu B; Wang Y; Zheng X; Wang Y
    Bioresour Technol; 2019 Dec; 293():122038. PubMed ID: 31454736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium.
    Preethi J; Vigneshwaran S; Meenakshi S
    Int J Biol Macromol; 2019 Jun; 130():491-498. PubMed ID: 30794904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution.
    Thinh NN; Hanh PT; Ha le TT; Anh le N; Hoang TV; Hoang VD; Dang le H; Khoi NV; Lam TD
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1214-8. PubMed ID: 23827563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of Cr (VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance.
    Wang XS; Chen LF; Li FY; Chen KL; Wan WY; Tang YJ
    J Hazard Mater; 2010 Mar; 175(1-3):816-22. PubMed ID: 19926221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of Cd(II) and Cr(VI) ions by highly cross-linked Thiocarbohydrazide-chitosan gel.
    Li R; Liang W; Li M; Jiang S; Huang H; Zhang Z; Wang JJ; Awasthi MK
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1072-1081. PubMed ID: 28684353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.