These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 29614430)
1. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Yildirim Ö Comput Biol Med; 2018 May; 96():189-202. PubMed ID: 29614430 [TBL] [Abstract][Full Text] [Related]
2. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Oh SL; Ng EYK; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():278-287. PubMed ID: 29903630 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture. Kim JH; Seo SY; Song CG; Kim KS J Healthc Eng; 2019; 2019():2826901. PubMed ID: 31183029 [TBL] [Abstract][Full Text] [Related]
4. Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM. Liu F; Li H; Wu T; Lin H; Lin C; Han G ISA Trans; 2023 Jul; 138():397-407. PubMed ID: 36898911 [TBL] [Abstract][Full Text] [Related]
5. Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier. Pandey SK; Janghel RR Phys Eng Sci Med; 2021 Mar; 44(1):173-182. PubMed ID: 33405209 [TBL] [Abstract][Full Text] [Related]
6. A new approach for arrhythmia classification using deep coded features and LSTM networks. Yildirim O; Baloglu UB; Tan RS; Ciaccio EJ; Acharya UR Comput Methods Programs Biomed; 2019 Jul; 176():121-133. PubMed ID: 31200900 [TBL] [Abstract][Full Text] [Related]
7. Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks. Çınar A; Tuncer SA Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):203-214. PubMed ID: 32955928 [TBL] [Abstract][Full Text] [Related]
8. A deep convolutional neural network model to classify heartbeats. Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adam M; Gertych A; Tan RS Comput Biol Med; 2017 Oct; 89():389-396. PubMed ID: 28869899 [TBL] [Abstract][Full Text] [Related]
9. An intelligent learning approach for improving ECG signal classification and arrhythmia analysis. Sangaiah AK; Arumugam M; Bian GB Artif Intell Med; 2020 Mar; 103():101788. PubMed ID: 32143795 [TBL] [Abstract][Full Text] [Related]
10. A novel application of deep learning for single-lead ECG classification. Mathews SM; Kambhamettu C; Barner KE Comput Biol Med; 2018 Aug; 99():53-62. PubMed ID: 29886261 [TBL] [Abstract][Full Text] [Related]
11. An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset. Gao J; Zhang H; Lu P; Wang Z J Healthc Eng; 2019; 2019():6320651. PubMed ID: 31737240 [TBL] [Abstract][Full Text] [Related]
12. Multi-information fusion neural networks for arrhythmia automatic detection. Chen A; Wang F; Liu W; Chang S; Wang H; He J; Huang Q Comput Methods Programs Biomed; 2020 Sep; 193():105479. PubMed ID: 32388066 [TBL] [Abstract][Full Text] [Related]
13. Automatic classification of heartbeats using neural network classifier based on a Bayesian framework. Karraz G; Magenes G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4016-9. PubMed ID: 17946596 [TBL] [Abstract][Full Text] [Related]
14. AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals. Radhakrishnan T; Karhade J; Ghosh SK; Muduli PR; Tripathy RK; Acharya UR Comput Biol Med; 2021 Oct; 137():104783. PubMed ID: 34481184 [TBL] [Abstract][Full Text] [Related]
15. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Yıldırım Ö; Pławiak P; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122 [TBL] [Abstract][Full Text] [Related]
16. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias]. Li D; Zhang H; Liu Z; Huang J; Wang T Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934 [TBL] [Abstract][Full Text] [Related]
17. Classification of Electrocardiography Hybrid Convolutional Neural Network-Long Short Term Memory with Fully Connected Layer. Ramachandran D; Kumar RS; Alkhayyat A; Malik RQ; Srinivasan P; Priya GG; Gosu Adigo A Comput Intell Neurosci; 2022; 2022():6348424. PubMed ID: 35860642 [TBL] [Abstract][Full Text] [Related]
18. Arrhythmia identification with two-lead electrocardiograms using artificial neural networks and support vector machines for a portable ECG monitor system. Liu SH; Cheng DC; Lin CM Sensors (Basel); 2013 Jan; 13(1):813-28. PubMed ID: 23303379 [TBL] [Abstract][Full Text] [Related]
19. ECG data enhancement method using generate adversarial networks based on Bi-LSTM and CBAM. Zhou F; Li J Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38266299 [No Abstract] [Full Text] [Related]
20. LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network. Bayani A; Kargar M Physiol Rep; 2024 Sep; 12(17):e16182. PubMed ID: 39218586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]