These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29614465)

  • 41. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses.
    Buckley JG
    Clin Biomech (Bristol, Avon); 2000 Jun; 15(5):352-8. PubMed ID: 10758296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Static versus dynamic prosthetic weight bearing in elderly trans-tibial amputees.
    Jones ME; Steel JR; Bashford GM; Davidson IR
    Prosthet Orthot Int; 1997 Aug; 21(2):100-6. PubMed ID: 9285953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of running speed and leg prostheses on mediolateral foot placement and its variability.
    Arellano CJ; McDermott WJ; Kram R; Grabowski AM
    PLoS One; 2015; 10(1):e0115637. PubMed ID: 25590634
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability.
    Abouhossein A; Awad MI; Maqbool HF; Crisp C; Stewart TD; Messenger N; Richardson RC; Dehghani-Sanij AA; Bradley D
    Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Joint kinematics and ground reaction forces in overground versus treadmill graded running.
    Firminger CR; Vernillo G; Savoldelli A; Stefanyshyn DJ; Millet GY; Edwards WB
    Gait Posture; 2018 Jun; 63():109-113. PubMed ID: 29729612
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees.
    Nolan L; Lees A
    Prosthet Orthot Int; 2000 Aug; 24(2):117-25. PubMed ID: 11061198
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The strategies to regulate and to modulate the propulsive forces during gait initiation in lower limb amputees.
    Michel V; Chong RK
    Exp Brain Res; 2004 Oct; 158(3):356-65. PubMed ID: 15167976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation.
    Castro MP; Soares D; Mendes E; Machado L
    PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.
    Morgenroth DC; Segal AD; Zelik KE; Czerniecki JM; Klute GK; Adamczyk PG; Orendurff MS; Hahn ME; Collins SH; Kuo AD
    Gait Posture; 2011 Oct; 34(4):502-7. PubMed ID: 21803584
    [TBL] [Abstract][Full Text] [Related]  

  • 53. External Mechanical Work in Runners With Unilateral Transfemoral Amputation.
    Murata H; Hisano G; Ichimura D; Takemura H; Hobara H
    Front Bioeng Biotechnol; 2021; 9():793651. PubMed ID: 35024365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees.
    De Asha AR; Buckley JG
    Clin Biomech (Bristol, Avon); 2015 May; 30(4):343-6. PubMed ID: 25779690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry?
    Loiret I; Villa C; Dauriac B; Bonnet X; Martinet N; Paysant J; Pillet H
    Prosthet Orthot Int; 2019 Oct; 43(5):492-499. PubMed ID: 31364482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new methodology to measure the running biomechanics of amputees.
    Wilson JR; Asfour S; Abdelrahman KZ; Gailey R
    Prosthet Orthot Int; 2009 Sep; 33(3):218-29. PubMed ID: 19658012
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study.
    Zhang T; Bai X; Liu F; Fan Y
    Gait Posture; 2019 Jun; 71():219-226. PubMed ID: 31078826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Normative ground reaction force data for able-bodied and trans-tibial amputee children during running.
    Engsberg JR; Lee AG; Tedford KG; Harder JA
    Prosthet Orthot Int; 1993 Aug; 17(2):83-9. PubMed ID: 8233773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.