BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29614620)

  • 1. Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
    Sasaki T; Seki J; Itano T; Sugihara-Seki M
    Biorheology; 2018; 54(5-6):153-165. PubMed ID: 29614620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of erythrocyte deformability during capillary wetting.
    Zhou R; Gordon J; Palmer AF; Chang HC
    Biotechnol Bioeng; 2006 Feb; 93(2):201-11. PubMed ID: 16302256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
    Cabrales P
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability.
    Ju M; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2017; 65(2):105-117. PubMed ID: 27447420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25 microm).
    Sakai H; Sato A; Okuda N; Takeoka S; Maeda N; Tsuchida E
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H583-9. PubMed ID: 19502557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo.
    Fischer DJ; Torrence NJ; Sprung RJ; Spence DM
    Analyst; 2003 Sep; 128(9):1163-8. PubMed ID: 14529024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G; Guido S
    Microvasc Res; 2011 Jul; 82(1):35-41. PubMed ID: 21397612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability.
    Parthasarathi K; Lipowsky HH
    Am J Physiol; 1999 Dec; 277(6):H2145-57. PubMed ID: 10600832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pfaffia paniculata extract improves red blood cell deformability in sickle cell patients.
    Mozar A; Charlot K; Sandor B; Rabaï M; Lemonne N; Billaud M; Hardy-Dessources MD; Beltan E; Pandey RC; Connes P; Ballas SK
    Clin Hemorheol Microcirc; 2015 Sep; 62(4):327-33. PubMed ID: 26444603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T; Jaffrin MY; Seshadri V; Mc Kay C
    Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.
    Drochon A; Barthes-Biesel D; Lacombe C; Lelievre JC
    J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flows of healthy and hardened RBC suspensions through a micropillar array.
    Stathoulopoulos A; Passos A; Balabani S
    Med Eng Phys; 2022 Sep; 107():103874. PubMed ID: 36068027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K; Raju SP; Chu X; Warren M; Pandya CD; Hoda N; Fulzele S; Raju R
    Int Immunopharmacol; 2018 Dec; 65():244-247. PubMed ID: 30340103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.