These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 29614775)

  • 1. The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids.
    Marchese L; Nascimento JF; Damasceno FS; Bringaud F; Michels PAM; Silber AM
    Pathogens; 2018 Apr; 7(2):. PubMed ID: 29614775
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy in trypanosomatids.
    Brennand A; Rico E; Michels PA
    Cells; 2012 Jul; 1(3):346-71. PubMed ID: 24710480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity.
    de Castro Neto AL; da Silveira JF; Mortara RA
    Front Cell Infect Microbiol; 2022; 12():807172. PubMed ID: 35573777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid and fatty acid metabolism in trypanosomatids.
    Parreira de Aquino G; Mendes Gomes MA; Köpke Salinas R; Laranjeira-Silva MF
    Microb Cell; 2021 Nov; 8(11):262-275. PubMed ID: 34782859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features.
    Michels PAM; Villafraz O; Pineda E; Alencar MB; Cáceres AJ; Silber AM; Bringaud F
    Exp Parasitol; 2021 May; 224():108102. PubMed ID: 33775649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of l-Alanine and Its Distinct Roles in the Bioenergetics of Trypanosoma cruzi.
    Girard RMBM; Crispim M; Alencar MB; Silber AM
    mSphere; 2018 Jul; 3(4):. PubMed ID: 30021880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism.
    McGwire BS; Kulkarni MM
    Exp Parasitol; 2010 Nov; 126(3):397-405. PubMed ID: 20159013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic Biology of Trypanosoma cruzi.
    Zuma AA; Dos Santos Barrias E; de Souza W
    Curr Pharm Des; 2021; 27(14):1671-1732. PubMed ID: 33272165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids.
    Geiger A; Bossard G; Sereno D; Pissarra J; Lemesre JL; Vincendeau P; Holzmuller P
    Front Immunol; 2016; 7():212. PubMed ID: 27303406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.
    Balcazar DE; Vanrell MC; Romano PS; Pereira CA; Goldbaum FA; Bonomi HR; Carrillo C
    PLoS Negl Trop Dis; 2017 Apr; 11(4):e0005513. PubMed ID: 28406895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biology of kinetoplastid parasites: insights and challenges from genomics and post-genomics.
    Gull K
    Int J Parasitol; 2001 May; 31(5-6):443-52. PubMed ID: 11334928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy in protists and their hosts: When, how and why?
    Romano PS; Akematsu T; Besteiro S; Bindschedler A; Carruthers VB; Chahine Z; Coppens I; Descoteaux A; Alberto Duque TL; He CY; Heussler V; Le Roch KG; Li FJ; de Menezes JPB; Menna-Barreto RFS; Mottram JC; Schmuckli-Maurer J; Turk B; Tavares Veras PS; Salassa BN; Vanrell MC
    Autophagy Rep; 2023; 2(1):. PubMed ID: 37064813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids.
    Lander N; Chiurillo MA
    J Eukaryot Microbiol; 2019 Nov; 66(6):981-991. PubMed ID: 31211904
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Semini G; Paape D; Blume M; Sernee MF; Peres-Alonso D; Calvignac-Spencer S; Döllinger J; Jehle S; Saunders E; McConville MJ; Aebischer T
    mBio; 2020 Jun; 11(3):. PubMed ID: 32487758
    [No Abstract]   [Full Text] [Related]  

  • 16. Extracellular Vesicles in Trypanosomatids: Host Cell Communication.
    Torrecilhas AC; Soares RP; Schenkman S; Fernández-Prada C; Olivier M
    Front Cell Infect Microbiol; 2020; 10():602502. PubMed ID: 33381465
    [No Abstract]   [Full Text] [Related]  

  • 17. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid uptake in
    Poudyal NR; Paul KS
    Front Cell Infect Microbiol; 2022; 12():949409. PubMed ID: 36478671
    [No Abstract]   [Full Text] [Related]  

  • 19. Multiple roles of proline transport and metabolism in trypanosomatids.
    Bringaud F; Barrett MP; Zilberstein D
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):349-74. PubMed ID: 22201748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates.
    Ullman B; Carter D
    Int J Parasitol; 1997 Feb; 27(2):203-13. PubMed ID: 9088991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.