These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29614959)

  • 1. The constitutive differential transcriptome of a brain circuit for vocal learning.
    Lovell PV; Huizinga NA; Friedrich SR; Wirthlin M; Mello CV
    BMC Genomics; 2018 Apr; 19(1):231. PubMed ID: 29614959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the molecular basis of neuronal excitability in a vocal learner.
    Friedrich SR; Lovell PV; Kaser TM; Mello CV
    BMC Genomics; 2019 Aug; 20(1):629. PubMed ID: 31375088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations.
    Lovell PV; Carleton JB; Mello CV
    BMC Genomics; 2013 Jul; 14():470. PubMed ID: 23845108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning.
    Mello CV
    Cold Spring Harb Protoc; 2014 Oct; 2014(12):1237-42. PubMed ID: 25342070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species.
    Chen Q; Heston JB; Burkett ZD; White SA
    J Exp Biol; 2013 Oct; 216(Pt 19):3682-92. PubMed ID: 24006346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent transcriptional specializations in the brains of humans and song-learning birds.
    Pfenning AR; Hara E; Whitney O; Rivas MV; Wang R; Roulhac PL; Howard JT; Wirthlin M; Lovell PV; Ganapathy G; Mouncastle J; Moseley MA; Thompson JW; Soderblom EJ; Iriki A; Kato M; Gilbert MT; Zhang G; Bakken T; Bongaarts A; Bernard A; Lein E; Mello CV; Hartemink AJ; Jarvis ED
    Science; 2014 Dec; 346(6215):1256846. PubMed ID: 25504733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birdsong "transcriptomics": neurochemical specializations of the oscine song system.
    Lovell PV; Clayton DF; Replogle KL; Mello CV
    PLoS One; 2008; 3(10):e3440. PubMed ID: 18941504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Song Deficits after Lentivirus-Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches.
    Norton P; Barschke P; Scharff C; Mendoza E
    J Neurosci; 2019 Dec; 39(49):9782-9796. PubMed ID: 31641053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic gene expression in the song system of zebra finches during the song learning period.
    Olson CR; Hodges LK; Mello CV
    Dev Neurobiol; 2015 Dec; 75(12):1315-38. PubMed ID: 25787707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food for song: expression of c-Fos and ZENK in the zebra finch song nuclei during food aversion learning.
    Tokarev K; Tiunova A; Scharff C; Anokhin K
    PLoS One; 2011; 6(6):e21157. PubMed ID: 21695176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Songbirds can learn flexible contextual control over syllable sequencing.
    Veit L; Tian LY; Monroy Hernandez CJ; Brainard MS
    Elife; 2021 Jun; 10():. PubMed ID: 34060473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mirrored patterns of lateralized neuronal activation reflect old and new memories in the avian auditory cortex.
    Olson EM; Maeda RK; Gobes SM
    Neuroscience; 2016 Aug; 330():395-402. PubMed ID: 27288718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds.
    Wang H; Sawai A; Toji N; Sugioka R; Shibata Y; Suzuki Y; Ji Y; Hayase S; Akama S; Sese J; Wada K
    PLoS Biol; 2019 Nov; 17(11):e3000476. PubMed ID: 31721761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain expression and song regulation of the cholecystokinin gene in the zebra finch (Taeniopygia guttata).
    Lovell PV; Mello CV
    J Comp Neurol; 2011 Feb; 519(2):211-37. PubMed ID: 21165972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the GABA(A) receptor gamma4-subunit gene in discrete nuclei within the zebra finch song system.
    Thode C; Güttinger HR; Darlison MG
    Neuroscience; 2008 Nov; 157(1):143-52. PubMed ID: 18824085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural circuit for vocal production responds to viscerosensory input in the songbird.
    Burke JE; Perkes AD; Perlegos AE; Schmidt MF
    J Neurophysiol; 2024 Feb; 131(2):304-310. PubMed ID: 38116612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in neuropeptide staining of song-control nuclei in zebra finch brains.
    Bottjer SW; Roselinsky H; Tran NB
    Brain Behav Evol; 1997; 50(5):284-303. PubMed ID: 9360005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent differential regulation of parvalbumin in the brains of vocal learners.
    Hara E; Rivas MV; Ward JM; Okanoya K; Jarvis ED
    PLoS One; 2012; 7(1):e29457. PubMed ID: 22238614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of topography within song control circuitry of zebra finches during the sensitive period for song learning.
    Iyengar S; Viswanathan SS; Bottjer SW
    J Neurosci; 1999 Jul; 19(14):6037-57. PubMed ID: 10407041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FnTm2, a novel brain-specific transcript, is dynamically expressed in the song learning circuit of the zebra finch.
    Agate RJ; Hertel M; Nottebohm F
    J Comp Neurol; 2007 Sep; 504(2):127-48. PubMed ID: 17626267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.