BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29615496)

  • 1. CRISPR/Cas9-mediated Genomic Editing of Cluap1/IFT38 Reveals a New Role in Actin Arrangement.
    Beyer T; Bolz S; Junger K; Horn N; Moniruzzaman M; Wissinger Y; Ueffing M; Boldt K
    Mol Cell Proteomics; 2018 Jul; 17(7):1285-1294. PubMed ID: 29615496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex.
    Katoh Y; Terada M; Nishijima Y; Takei R; Nozaki S; Hamada H; Nakayama K
    J Biol Chem; 2016 May; 291(21):10962-75. PubMed ID: 26980730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye.
    Lee C; Wallingford JB; Gross JM
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4585-92. PubMed ID: 24970261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ciliogenesis-coupled accumulation of IFT-B proteins in a novel cytoplasmic compartment.
    Lamri L; Twan WK; Katoh TA; Botilde Y; Takaoka K; Ikawa Y; Nishimura H; Fukumoto A; Minegishi K; Mizuno K; Hamada H
    Genes Cells; 2019 Nov; 24(11):731-745. PubMed ID: 31554018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluap1 localizes preferentially to the base and tip of cilia and is required for ciliogenesis in the mouse embryo.
    Botilde Y; Yoshiba S; Shinohara K; Hasegawa T; Nishimura H; Shiratori H; Hamada H
    Dev Biol; 2013 Sep; 381(1):203-12. PubMed ID: 23742838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian Clusterin associated protein 1 is an evolutionarily conserved protein required for ciliogenesis.
    Pasek RC; Berbari NF; Lewis WR; Kesterson RA; Yoder BK
    Cilia; 2012 Nov; 1(1):20. PubMed ID: 23351563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous epitope tagging of heat shock protein 70 isoform Hsc70 using CRISPR/Cas9.
    Nitika ; Truman AW
    Cell Stress Chaperones; 2018 May; 23(3):347-355. PubMed ID: 28944418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knockout of
    Malek N; Mrówczyńska E; Michrowska A; Mazurkiewicz E; Pavlyk I; Mazur AJ
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid genome editing by CRISPR-Cas9-POLD3 fusion.
    Reint G; Li Z; Labun K; Keskitalo S; Soppa I; Mamia K; Tolo E; Szymanska M; Meza-Zepeda LA; Lorenz S; Cieslar-Pobuda A; Hu X; Bordin DL; Staerk J; Valen E; Schmierer B; Varjosalo M; Taipale J; Haapaniemi E
    Elife; 2021 Dec; 10():. PubMed ID: 34898428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review).
    Rodríguez-Rodríguez DR; Ramírez-Solís R; Garza-Elizondo MA; Garza-Rodríguez ML; Barrera-Saldaña HA
    Int J Mol Med; 2019 Apr; 43(4):1559-1574. PubMed ID: 30816503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.
    Haapaniemi E; Botla S; Persson J; Schmierer B; Taipale J
    Nat Med; 2018 Jul; 24(7):927-930. PubMed ID: 29892067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA.
    Zhang Y; Ling X; Su X; Zhang S; Wang J; Zhang P; Feng W; Zhu YY; Liu T; Tang X
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20895-20899. PubMed ID: 33448579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing.
    Reuven N; Adler J; Broennimann K; Myers N; Shaul Y
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis.
    Taschner M; Lorentzen A; Mourão A; Collins T; Freke GM; Moulding D; Basquin J; Jenkins D; Lorentzen E
    Elife; 2018 Apr; 7():. PubMed ID: 29658880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research.
    Raper AT; Stephenson AA; Suo Z
    J Am Chem Soc; 2018 Sep; 140(36):11142-11152. PubMed ID: 30160947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional CRISPR-Cas Genome Editing in
    Bahuguna S; Redhai S; Zhou J; Wang T; Port F; Boutros M
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.
    Hussain B; Lucas SJ; Budak H
    Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology.
    Huck S; Bock J; Girardello J; Gauert M; Pul Ü
    RNA Biol; 2019 Apr; 16(4):397-403. PubMed ID: 29996713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.
    Yang TC; Chang CY; Yarmishyn AA; Mao YS; Yang YP; Wang ML; Hsu CC; Yang HY; Hwang DK; Chen SJ; Tsai ML; Lai YH; Tzeng Y; Chang CC; Chiou SH
    Acta Biomater; 2020 Jan; 101():484-494. PubMed ID: 31672582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.