BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29615501)

  • 1. CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis.
    Kujoth GC; Sullivan TD; Merkhofer R; Lee TJ; Wang H; Brandhorst T; Wüthrich M; Klein BS
    mBio; 2018 Apr; 9(2):. PubMed ID: 29615501
    [No Abstract]   [Full Text] [Related]  

  • 2. Gene Editing in Dimorphic Fungi Using CRISPR/Cas9.
    Kujoth GC; Sullivan TD; Klein BS
    Curr Protoc Microbiol; 2020 Dec; 59(1):e132. PubMed ID: 33315302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 4. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-Mediated Gene Silencing in Cultured Human Epithelia.
    Gago S; Overton NLD; Bowyer P
    Methods Mol Biol; 2021; 2260():37-47. PubMed ID: 33405030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 in genome editing: Its function and medical applications.
    Khadempar S; Familghadakchi S; Motlagh RA; Farahani N; Dashtiahangar M; Rezaei H; Gheibi Hayat SM
    J Cell Physiol; 2019 May; 234(5):5751-5761. PubMed ID: 30362544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Editing of the Nuclear
    Guzmán-Zapata D; Sandoval-Vargas JM; Macedo-Osorio KS; Salgado-Manjarrez E; Castrejón-Flores JL; Oliver-Salvador MDC; Durán-Figueroa NV; Nogué F; Badillo-Corona JA
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30871076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-dependent RNA targeting by CRISPR-Cas9.
    Strutt SC; Torrez RM; Kaya E; Negrete OA; Doudna JA
    Elife; 2018 Jan; 7():. PubMed ID: 29303478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted gene disruption reveals an adhesin indispensable for pathogenicity of Blastomyces dermatitidis.
    Brandhorst TT; Wüthrich M; Warner T; Klein B
    J Exp Med; 1999 Apr; 189(8):1207-16. PubMed ID: 10209038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Era of CRISPR/ Cas9 Mediated Plant Genome Editing.
    Khurshid H; Jan SA; Shinwari ZK; Jamal M; Shah SH
    Curr Issues Mol Biol; 2018; 26():47-54. PubMed ID: 28879855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation.
    Huang WP; Du YJ; Yang Y; He JN; Lei Q; Yang XY; Zhang KQ; Niu XM
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769197
    [No Abstract]   [Full Text] [Related]  

  • 17. Turning on virulence: Mechanisms that underpin the morphologic transition and pathogenicity of
    McBride JA; Gauthier GM; Klein BS
    Virulence; 2019 Dec; 10(1):801-809. PubMed ID: 29532714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
    Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC
    Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribozyme-mediated, multiplex CRISPR gene editing and CRISPR interference (CRISPRi) in rodent-infectious
    Walker MP; Lindner SE
    J Biol Chem; 2019 Jun; 294(24):9555-9566. PubMed ID: 31043479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.