These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29615712)

  • 21. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells.
    Dewan R; Fischer S; Meyer-Rochow VB; Özdemir Y; Hamraz S; Knipp D
    Bioinspir Biomim; 2012 Mar; 7(1):016003. PubMed ID: 22155981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimetic antireflective hierarchical arrays.
    Xu H; Lu N; Shi G; Qi D; Yang B; Li H; Xu W; Chi L
    Langmuir; 2011 Apr; 27(8):4963-7. PubMed ID: 21438564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resist-free antireflective nanostructured film fabricated by thermal-NIL.
    Kang YH; Han JH; Cho SY; Choi CG
    Nano Converg; 2014; 1(1):19. PubMed ID: 28191399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications.
    Dong L; Zhang Z; Wang L; Weng Z; Ouyang M; Fu Y; Wang J; Li D; Wang Z
    Appl Opt; 2019 Aug; 58(24):6706-6712. PubMed ID: 31503604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.
    Zhang Y; Jia B; Gu M
    Opt Express; 2016 Mar; 24(6):A506-14. PubMed ID: 27136871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance.
    Diao Z; Hirte J; Chen W; Spatz JP
    ACS Omega; 2017 Aug; 2(8):5012-5018. PubMed ID: 31457778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Titanium Oxide/Silicon Moth-Eye Structures with Antireflection, p-n Heterojunctions, and Superhydrophilicity.
    Shi G; Chen J; Wang L; Wang D; Yang J; Li Y; Zhang L; Ni C; Chi L
    Langmuir; 2016 Oct; 32(41):10719-10724. PubMed ID: 27666724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Study on Broadband Antireflection of Moth-Eye Nanostructured Polymer Film with Flexible Polyethylene Terephthalate Substrate.
    Lan J; Yang Y; Hu S
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films.
    Manabe K; Nishizawa S; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13985-93. PubMed ID: 25093243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.
    Li WD; Chou SY
    Opt Express; 2010 Jan; 18(2):931-7. PubMed ID: 20173915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures.
    Xie S; Wan X; Yang B; Zhang W; Wei X; Zhuang S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of high-transmittance and low-reflectance meter-scale moth-eye film via roll-to-roll printing.
    Ju S; Choi JY; Chae D; Lim H; Kang H; Lee H
    Nanotechnology; 2020 Dec; 31(50):505301. PubMed ID: 32693401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).
    Jin J; Jin C; Li C; Deng W; Chang Y
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1768-71. PubMed ID: 24323257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.
    Rahman A; Ashraf A; Xin H; Tong X; Sutter P; Eisaman MD; Black CT
    Nat Commun; 2015 Jan; 6():5963. PubMed ID: 25607887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating.
    van de Groep J; Spinelli P; Polman A
    Nano Lett; 2015 Jun; 15(6):4223-8. PubMed ID: 26010375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR.
    Gonzalez FL; Gordon MJ
    Opt Express; 2014 Jun; 22(11):12808-16. PubMed ID: 24921476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized moth-eye anti-reflective structures for As
    Weiblen RJ; Menyuk CR; Busse LE; Shaw LB; Sanghera JS; Aggarwal ID
    Opt Express; 2016 May; 24(10):10172-87. PubMed ID: 27409844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing.
    Han G; Nguyen TB; Park S; Jung Y; Lee J; Lim H
    ACS Nano; 2020 Aug; 14(8):10198-10209. PubMed ID: 32700892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.