These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 29615848)
1. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations. Korik A; Sosnik R; Siddique N; Coyle D Front Neurosci; 2018; 12():130. PubMed ID: 29615848 [No Abstract] [Full Text] [Related]
2. 3D hand motion trajectory prediction from EEG mu and beta bandpower. Korik A; Sosnik R; Siddique N; Coyle D Prog Brain Res; 2016; 228():71-105. PubMed ID: 27590966 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials. Sosnik R; Ben Zur O J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655 [TBL] [Abstract][Full Text] [Related]
4. Decoding Imagined 3D Arm Movement Trajectories From EEG to Control Two Virtual Arms-A Pilot Study. Korik A; Sosnik R; Siddique N; Coyle D Front Neurorobot; 2019; 13():94. PubMed ID: 31798438 [No Abstract] [Full Text] [Related]
5. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG current source dipoles. Sosnik R; Zheng L J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33752186 [No Abstract] [Full Text] [Related]
6. Block design enhances classification of 3D reach targets from electroencephalographic signals. Sosnik R; Tadipatri VA; Tewfik AH; Pellizzer G Neuroscience; 2016 Aug; 329():201-12. PubMed ID: 27223628 [TBL] [Abstract][Full Text] [Related]
7. Neural decoding of continuous upper limb movements: a meta-analysis. Khaliq Fard M; Fallah A; Maleki A Disabil Rehabil Assist Technol; 2022 Oct; 17(7):731-737. PubMed ID: 33186068 [TBL] [Abstract][Full Text] [Related]
8. Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface. Jang SJ; Yang YJ; Ryun S; Kim JS; Chung CK; Jeong J J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35985293 [No Abstract] [Full Text] [Related]
9. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques. Úbeda A; Azorín JM; Chavarriaga R; R Millán JD J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603 [TBL] [Abstract][Full Text] [Related]
10. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. Ofner P; Müller-Putz GR IEEE Trans Biomed Eng; 2015 Mar; 62(3):972-81. PubMed ID: 25494495 [TBL] [Abstract][Full Text] [Related]
11. Relationship between speed and EEG activity during imagined and executed hand movements. Yuan H; Perdoni C; He B J Neural Eng; 2010 Apr; 7(2):26001. PubMed ID: 20168002 [TBL] [Abstract][Full Text] [Related]
12. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals. Kim JH; Bießmann F; Lee SW IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811 [TBL] [Abstract][Full Text] [Related]
13. Direction decoding of imagined hand movements using subject-specific features from parietal EEG. Sagila GK; Vinod AP J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35901779 [No Abstract] [Full Text] [Related]
14. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control. Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523 [TBL] [Abstract][Full Text] [Related]
15. The Advantage of Low-Delta Electroencephalogram Phase Feature for Reconstructing the Center-Out Reaching Hand Movements. Zeng H; Sun Y; Xu G; Wu C; Song A; Xu B; Li H; Hu C Front Neurosci; 2019; 13():480. PubMed ID: 31156367 [TBL] [Abstract][Full Text] [Related]
16. Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy. Kobler RJ; Sburlea AI; Mondini V; Hirata M; Müller-Putz GR J Neural Eng; 2020 Nov; 17(5):056027. PubMed ID: 33146148 [TBL] [Abstract][Full Text] [Related]
17. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation. Benzy VK; Vinod AP; Subasree R; Alladi S; Raghavendra K IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3051-3062. PubMed ID: 33211662 [TBL] [Abstract][Full Text] [Related]
18. Calculation and Analysis of Microstate Related to Variation in Executed and Imagined Movement of Force of Hand Clenching. Fu Y; Chen J; Xiong X Comput Intell Neurosci; 2018; 2018():9270685. PubMed ID: 30224914 [TBL] [Abstract][Full Text] [Related]
19. Individual finger movement decoding using a novel ultra-high-density electroencephalography-based brain-computer interface system. Lee HS; Schreiner L; Jo SH; Sieghartsleitner S; Jordan M; Pretl H; Guger C; Park HS Front Neurosci; 2022; 16():1009878. PubMed ID: 36340769 [TBL] [Abstract][Full Text] [Related]
20. Classification of different reaching movements from the same limb using EEG. Shiman F; López-Larraz E; Sarasola-Sanz A; Irastorza-Landa N; Spüler M; Birbaumer N; Ramos-Murguialday A J Neural Eng; 2017 Aug; 14(4):046018. PubMed ID: 28467325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]