BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 29615929)

  • 1. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures.
    Gao Y; Arfat Y; Wang H; Goswami N
    Front Physiol; 2018; 9():235. PubMed ID: 29615929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle unloading: A comparison between spaceflight and ground-based models.
    Qaisar R; Karim A; Elmoselhi AB
    Acta Physiol (Oxf); 2020 Mar; 228(3):e13431. PubMed ID: 31840423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways.
    Brooks NE; Myburgh KH
    Front Physiol; 2014; 5():99. PubMed ID: 24672488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling mechanisms involved in disuse muscle atrophy.
    Zhang P; Chen X; Fan M
    Med Hypotheses; 2007; 69(2):310-21. PubMed ID: 17376604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review.
    Marusic U; Narici M; Simunic B; Pisot R; Ritzmann R
    J Appl Physiol (1985); 2021 Jul; 131(1):194-206. PubMed ID: 33703945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disuse-induced muscle wasting.
    Bodine SC
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2200-8. PubMed ID: 23800384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss.
    Bajotto G; Shimomura Y
    J Nutr Sci Vitaminol (Tokyo); 2006 Aug; 52(4):233-47. PubMed ID: 17087049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats.
    Baehr LM; West DWD; Marshall AG; Marcotte GR; Baar K; Bodine SC
    J Appl Physiol (1985); 2017 May; 122(5):1336-1350. PubMed ID: 28336537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo ceramides synthesis is not involved in skeletal muscle atrophy induced by short-term mechanical unloading.
    Salaun E; Gratas-Delamarche A; Derbré F
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S28. PubMed ID: 26461326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension.
    Brocca L; Toniolo L; Reggiani C; Bottinelli R; Sandri M; Pellegrino MA
    J Physiol; 2017 Feb; 595(4):1143-1158. PubMed ID: 27767211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of skeletal muscle size and anabolism are reproducible with multiple periods of unloading/reloading.
    Shimkus KL; Shirazi-Fard Y; Wiggs MP; Ullah ST; Pohlenz C; Gatlin DM; Carroll CC; Hogan HA; Fluckey JD
    J Appl Physiol (1985); 2018 Nov; 125(5):1456-1467. PubMed ID: 30091665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions.
    Mirzoev TM; Sharlo KA; Shenkman BS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.
    Fisher AG; Seaborne RA; Hughes TM; Gutteridge A; Stewart C; Coulson JM; Sharples AP; Jarvis JC
    FASEB J; 2017 Dec; 31(12):5268-5282. PubMed ID: 28821632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Eukarion-134 on Akt-mTOR signalling in the rat soleus during 7 days of mechanical unloading.
    Kuczmarski JM; Hord JM; Lee Y; Guzzoni V; Rodriguez D; Lawler MS; Garcia-Villatoro EL; Holly D; Ryan P; Falcon K; Garcia M; Janini Gomes M; Fluckey JD; Lawler JM
    Exp Physiol; 2018 Apr; 103(4):545-558. PubMed ID: 29315934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics.
    Murgia M; Ciciliot S; Nagaraj N; Reggiani C; Schiaffino S; Franchi MV; Pišot R; Šimunič B; Toniolo L; Blaauw B; Sandri M; Biolo G; Flück M; Narici MV; Mann M
    PNAS Nexus; 2022 Jul; 1(3):pgac086. PubMed ID: 36741463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures.
    Chopard A; Hillock S; Jasmin BJ
    J Cell Mol Med; 2009 Sep; 13(9B):3032-50. PubMed ID: 19656243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.