BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

750 related articles for article (PubMed ID: 29616047)

  • 1. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases.
    Dornan GL; Burke JE
    Front Immunol; 2018; 9():575. PubMed ID: 29616047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in
    Dornan GL; Siempelkamp BD; Jenkins ML; Vadas O; Lucas CL; Burke JE
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1982-1987. PubMed ID: 28167755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases.
    Dornan GL; Stariha JTB; Rathinaswamy MK; Powell CJ; Boulanger MJ; Burke JE
    Structure; 2020 Feb; 28(2):145-156.e5. PubMed ID: 31831213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class I phosphoinositide 3-kinase (PI3K) regulatory subunits and their roles in signaling and disease.
    Rathinaswamy MK; Burke JE
    Adv Biol Regul; 2020 Jan; 75():100657. PubMed ID: 31611073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer.
    Vallejo-Díaz J; Chagoyen M; Olazabal-Morán M; González-García A; Carrera AC
    Trends Cancer; 2019 Apr; 5(4):233-244. PubMed ID: 30961830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas.
    Siempelkamp BD; Rathinaswamy MK; Jenkins ML; Burke JE
    J Biol Chem; 2017 Jul; 292(29):12256-12266. PubMed ID: 28515318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers.
    Geering B; Cutillas PR; Nock G; Gharbi SI; Vanhaesebroeck B
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7809-14. PubMed ID: 17470792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the pathological mechanisms of p85α mutations using a yeast-based phosphatidylinositol 3-kinase model.
    Oliver MD; Fernández-Acero T; Luna S; Rodríguez-Escudero I; Molina M; Pulido R; Cid VJ
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28143957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases.
    Hon WC; Berndt A; Williams RL
    Oncogene; 2012 Aug; 31(32):3655-66. PubMed ID: 22120714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K.
    Lucas CL; Zhang Y; Venida A; Wang Y; Hughes J; McElwee J; Butrick M; Matthews H; Price S; Biancalana M; Wang X; Richards M; Pozos T; Barlan I; Ozen A; Rao VK; Su HC; Lenardo MJ
    J Exp Med; 2014 Dec; 211(13):2537-47. PubMed ID: 25488983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α.
    Thorpe LM; Spangle JM; Ohlson CE; Cheng H; Roberts TM; Cantley LC; Zhao JJ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7095-7100. PubMed ID: 28630349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Class IA Phosphatidylinositol 3-Kinase Isoform p110α Mediates Vascular Remodeling.
    Vantler M; Jesus J; Leppänen O; Scherner M; Berghausen EM; Mustafov L; Chen X; Kramer T; Zierden M; Gerhardt M; Ten Freyhaus H; Blaschke F; Sterner-Kock A; Baldus S; Zhao JJ; Rosenkranz S
    Arterioscler Thromb Vasc Biol; 2015 Jun; 35(6):1434-44. PubMed ID: 25908763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PI3K pathway defects leading to immunodeficiency and immune dysregulation.
    Nunes-Santos CJ; Uzel G; Rosenzweig SD
    J Allergy Clin Immunol; 2019 May; 143(5):1676-1687. PubMed ID: 31060715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disseminated and Congenital Toxoplasmosis in a Mother and Child With Activated PI3-Kinase δ Syndrome Type 2 (APDS2): Case Report and a Literature Review of Toxoplasma Infections in Primary Immunodeficiencies.
    Karanovic D; Michelow IC; Hayward AR; DeRavin SS; Delmonte OM; Grigg ME; Dobbs AK; Niemela JE; Stoddard J; Alhinai Z; Rybak N; Hernandez N; Pittaluga S; Rosenzweig SD; Uzel G; Notarangelo LD
    Front Immunol; 2019; 10():77. PubMed ID: 30891027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK.
    Tran KB; Kolekar S; Jabed A; Jaynes P; Shih JH; Wang Q; Flanagan JU; Rewcastle GW; Baguley BC; Shepherd PR
    BMC Cancer; 2021 Feb; 21(1):136. PubMed ID: 33549048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer.
    Urick ME; Rudd ML; Godwin AK; Sgroi D; Merino M; Bell DW
    Cancer Res; 2011 Jun; 71(12):4061-7. PubMed ID: 21478295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors.
    Tsolakos N; Durrant TN; Chessa T; Suire SM; Oxley D; Kulkarni S; Downward J; Perisic O; Williams RL; Stephens L; Hawkins PT
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12176-12181. PubMed ID: 30442661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain.
    Hofmann BT; Jücker M
    Cell Signal; 2012 Oct; 24(10):1950-4. PubMed ID: 22735814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class IA PI3K regulatory subunits: p110-independent roles and structures.
    Fox M; Mott HR; Owen D
    Biochem Soc Trans; 2020 Aug; 48(4):1397-1417. PubMed ID: 32677674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of class IA phosphoinositide 3-kinase catalytic subunits p110 alpha and beta by protease-activated receptor 2 and beta-arrestins.
    Wang P; Kumar P; Wang C; Defea KA
    Biochem J; 2007 Dec; 408(2):221-30. PubMed ID: 17680774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.