These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29616254)

  • 21. How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth.
    Dong J; Zhang L; Zhang K; Ding F
    Nanoscale; 2018 Apr; 10(15):6878-6883. PubMed ID: 29633768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.
    Kitzmann J; Göritz A; Fraschke M; Lukosius M; Wenger C; Wolff A; Lupina G
    Sci Rep; 2016 Jul; 6():29223. PubMed ID: 27381715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001).
    Driver MS; Beatty JD; Olanipekun O; Reid K; Rath A; Voyles PM; Kelber JA
    Langmuir; 2016 Mar; 32(11):2601-7. PubMed ID: 26940024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene.
    Elliott JA; Shibuta Y; Amara H; Bichara C; Neyts EC
    Nanoscale; 2013 Aug; 5(15):6662-76. PubMed ID: 23774798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced nucleation of germanium on graphene via dipole engineering.
    Yoo J; Ahmed T; Chen R; Chen A; Kim YH; Kwon KC; Park CW; Kang HS; Jang HW; Hong YJ; Yang WS; Lee CH
    Nanoscale; 2018 Mar; 10(12):5689-5694. PubMed ID: 29532840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A visualization method for probing grain boundaries of single layer graphene via molecular beam epitaxy.
    Zhan L; Wan W; Zhu Z; Zhao Z; Zhang Z; Shih TM; Cai W
    Nanotechnology; 2017 Jul; 28(30):305601. PubMed ID: 28590942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001).
    Liu Y; Weinert M; Li L
    Phys Rev Lett; 2012 Mar; 108(11):115501. PubMed ID: 22540484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrocarbon decomposition kinetics on the Ir(111) surface.
    Tetlow H; Curcio D; Baraldi A; Kantorovich L
    Phys Chem Chem Phys; 2018 Feb; 20(9):6083-6099. PubMed ID: 29303172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition.
    John R; Ashokreddy A; Vijayan C; Pradeep T
    Nanotechnology; 2011 Apr; 22(16):165701. PubMed ID: 21393813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene.
    Wang B; Caffio M; Bromley C; Früchtl H; Schaub R
    ACS Nano; 2010 Oct; 4(10):5773-82. PubMed ID: 20886811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene from fingerprints: exhausting the performance of liquid precursor deposition.
    Müller F; Grandthyll S; Gsell S; Weinl M; Schreck M; Jacobs K
    Langmuir; 2014 Jun; 30(21):6114-9. PubMed ID: 24807530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond.
    Bakharev PV; Huang M; Saxena M; Lee SW; Joo SH; Park SO; Dong J; Camacho-Mojica DC; Jin S; Kwon Y; Biswal M; Ding F; Kwak SK; Lee Z; Ruoff RS
    Nat Nanotechnol; 2020 Jan; 15(1):59-66. PubMed ID: 31819243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time observation of epitaxial graphene domain reorientation.
    Rogge PC; Thürmer K; Foster ME; McCarty KF; Dubon OD; Bartelt NC
    Nat Commun; 2015 Apr; 6():6880. PubMed ID: 25892219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition.
    Vitchev R; Malesevic A; Petrov RH; Kemps R; Mertens M; Vanhulsel A; Van Haesendonck C
    Nanotechnology; 2010 Mar; 21(9):095602. PubMed ID: 20110582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gas-phase dynamics in graphene growth by chemical vapour deposition.
    Li G; Huang SH; Li Z
    Phys Chem Chem Phys; 2015 Sep; 17(35):22832-6. PubMed ID: 26265486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications.
    Tonkikh AA; Voloshina EN; Werner P; Blumtritt H; Senkovskiy B; Güntherodt G; Parkin SS; Dedkov YS
    Sci Rep; 2016 Mar; 6():23547. PubMed ID: 27009238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold intercalation of boron-doped graphene on Ni(111): XPS and DFT study.
    Zhao W; Gebhardt J; Gotterbarm K; Höfert O; Gleichweit C; Papp C; Görling A; Steinrück HP
    J Phys Condens Matter; 2013 Nov; 25(44):445002. PubMed ID: 24056002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy.
    Summerfield A; Davies A; Cheng TS; Korolkov VV; Cho Y; Mellor CJ; Foxon CT; Khlobystov AN; Watanabe K; Taniguchi T; Eaves L; Novikov SV; Beton PH
    Sci Rep; 2016 Mar; 6():22440. PubMed ID: 26928710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration.
    Chang SJ; Hyun MS; Myung S; Kang MA; Yoo JH; Lee KG; Choi BG; Cho Y; Lee G; Park TJ
    Sci Rep; 2016 Mar; 6():22653. PubMed ID: 26961409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.