These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 29616277)
1. Arsenic for high-capacity lithium- and sodium-ion batteries. Lim YR; Shojaei F; Park K; Jung CS; Park J; Cho WI; Kang HS Nanoscale; 2018 Apr; 10(15):7047-7057. PubMed ID: 29616277 [TBL] [Abstract][Full Text] [Related]
2. Preparation of a Si/SiO Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824 [TBL] [Abstract][Full Text] [Related]
3. Two-Dimensional WS Debela TT; Lim YR; Seo HW; Kwon IS; Kwak IH; Park J; Cho WI; Kang HS ACS Appl Mater Interfaces; 2018 Nov; 10(44):37928-37936. PubMed ID: 30360106 [TBL] [Abstract][Full Text] [Related]
4. Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries. Yang F; Yu F; Zhang Z; Zhang K; Lai Y; Li J Chemistry; 2016 Feb; 22(7):2333-8. PubMed ID: 26757402 [TBL] [Abstract][Full Text] [Related]
5. Ultralong Sb Luo W; Calas A; Tang C; Li F; Zhou L; Mai L ACS Appl Mater Interfaces; 2016 Dec; 8(51):35219-35226. PubMed ID: 27959503 [TBL] [Abstract][Full Text] [Related]
6. Encapsulating Red Phosphorus in Ultralarge Pore Volume Hierarchical Porous Carbon Nanospheres for Lithium/Sodium-Ion Half/Full Batteries. Liu B; Zhang Q; Li L; Jin Z; Wang C; Zhang L; Su ZM ACS Nano; 2019 Nov; 13(11):13513-13523. PubMed ID: 31714743 [TBL] [Abstract][Full Text] [Related]
7. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456 [TBL] [Abstract][Full Text] [Related]
8. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries. Fan L; Lu B Small; 2016 May; 12(20):2783-91. PubMed ID: 27061155 [TBL] [Abstract][Full Text] [Related]
9. Core-shell ZnCo Shi W; Zhao H; Lu B Nanotechnology; 2017 Apr; 28(16):165403. PubMed ID: 28230537 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017 [TBL] [Abstract][Full Text] [Related]
11. Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability. Qiu D; Fu L; Zhan C; Lu J; Wu D ACS Appl Mater Interfaces; 2018 Sep; 10(35):29505-29510. PubMed ID: 30092138 [TBL] [Abstract][Full Text] [Related]
12. Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Lu H; Chen R; Hu Y; Wang X; Wang Y; Ma L; Zhu G; Chen T; Tie Z; Jin Z; Liu J Nanoscale; 2017 Feb; 9(5):1972-1977. PubMed ID: 28102408 [TBL] [Abstract][Full Text] [Related]
13. The electrochemical storage mechanism of an In Yuan Y; Yang M; Liu L; Xia J; Yan H; Liu J; Wen J; Zhang Y; Wang X Nanoscale; 2020 Oct; 12(39):20337-20346. PubMed ID: 33006354 [TBL] [Abstract][Full Text] [Related]
14. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion. Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Ma L; Chen R; Hu Y; Zhu G; Chen T; Lu H; Liang J; Tie Z; Jin Z; Liu J Nanoscale; 2016 Oct; 8(41):17911-17918. PubMed ID: 27722438 [TBL] [Abstract][Full Text] [Related]
16. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries. Dong C; Xu L ACS Appl Mater Interfaces; 2017 Mar; 9(8):7160-7168. PubMed ID: 28166402 [TBL] [Abstract][Full Text] [Related]
17. Resolving the Origins of Superior Cycling Performance of Antimony Anode in Sodium-ion Batteries: A Comparison with Lithium-ion Batteries. Shao R; Sun Z; Wang L; Pan J; Yi L; Zhang Y; Han J; Yao Z; Li J; Wen Z; Chen S; Chou SL; Peng DL; Zhang Q Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202320183. PubMed ID: 38265307 [TBL] [Abstract][Full Text] [Related]
18. Improved Lithium-Ion and Sodium-Ion Storage Properties from Few-Layered WS Pang Q; Gao Y; Zhao Y; Ju Y; Qiu H; Wei Y; Liu B; Zou B; Du F; Chen G Chemistry; 2017 May; 23(29):7074-7080. PubMed ID: 28374501 [TBL] [Abstract][Full Text] [Related]
19. Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries. Chen J; Xu MW; Wu J; Li CM Nanoscale; 2018 May; 10(19):9115-9122. PubMed ID: 29718033 [TBL] [Abstract][Full Text] [Related]
20. First-principles study of the structural and electrochemical properties of Na Choe SH; Yu CJ; Pak YC; Choe YG; Jon KI; Kim JS; Ri KC Phys Chem Chem Phys; 2021 Apr; 23(14):8456-8465. PubMed ID: 33876009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]