These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29616314)

  • 1. Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis.
    Jain A; Chen WN
    Appl Microbiol Biotechnol; 2018 May; 102(10):4563-4575. PubMed ID: 29616314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus.
    Gorbatyuk B; Marczynski GT
    Mol Microbiol; 2005 Feb; 55(4):1233-45. PubMed ID: 15686567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untargeted metabolomics links glutathione to bacterial cell cycle progression.
    Hartl J; Kiefer P; Kaczmarczyk A; Mittelviefhaus M; Meyer F; Vonderach T; Hattendorf B; Jenal U; Vorholt JA
    Nat Metab; 2020 Feb; 2(2):153-166. PubMed ID: 32090198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus.
    Mouammine A; Eich K; Frandi A; Collier J
    Sci Rep; 2018 Oct; 8(1):14677. PubMed ID: 30279528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction.
    Wang C; Hao L; Sun X; Yang Y; Yin Q; Li M
    J Hazard Mater; 2022 May; 430():128363. PubMed ID: 35183050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.
    Holtzendorff J; Reinhardt J; Viollier PH
    Bioessays; 2006 Apr; 28(4):355-61. PubMed ID: 16547950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus.
    Beaufay F; Coppine J; Mayard A; Laloux G; De Bolle X; Hallez R
    EMBO J; 2015 Jul; 34(13):1786-800. PubMed ID: 25953831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate.
    Irnov I; Wang Z; Jannetty ND; Bustamante JA; Rhee KY; Jacobs-Wagner C
    PLoS Genet; 2017 Aug; 13(8):e1006978. PubMed ID: 28827812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus.
    Hu P; Brodie EL; Suzuki Y; McAdams HH; Andersen GL
    J Bacteriol; 2005 Dec; 187(24):8437-49. PubMed ID: 16321948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium.
    Yung MC; Ma J; Salemi MR; Phinney BS; Bowman GR; Jiao Y
    J Proteome Res; 2014 Apr; 13(4):1833-47. PubMed ID: 24555639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of medium pH by Caulobacter crescentus facilitates recovery from uranium-induced growth arrest.
    Park DM; Jiao Y
    Appl Environ Microbiol; 2014 Sep; 80(18):5680-8. PubMed ID: 25002429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations that alter RcdA surface residues decouple protein localization and CtrA proteolysis in Caulobacter crescentus.
    Taylor JA; Wilbur JD; Smith SC; Ryan KR
    J Mol Biol; 2009 Nov; 394(1):46-60. PubMed ID: 19747489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Basis and Ecological Relevance of
    Heinrich K; Leslie DJ; Morlock M; Bertilsson S; Jonas K
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle.
    Li F; Subramanian K; Chen M; Tyson JJ; Cao Y
    Phys Biol; 2016 Jun; 13(3):035007. PubMed ID: 27345750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative study of the division cycle of Caulobacter crescentus stalked cells.
    Li S; Brazhnik P; Sobral B; Tyson JJ
    PLoS Comput Biol; 2008 Jan; 4(1):e9. PubMed ID: 18225942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression.
    Bastedo DP; Marczynski GT
    Mol Microbiol; 2009 Apr; 72(1):139-54. PubMed ID: 19220749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle regulation in Caulobacter: location, location, location.
    Goley ED; Iniesta AA; Shapiro L
    J Cell Sci; 2007 Oct; 120(Pt 20):3501-7. PubMed ID: 17928306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling of spatiotemporal protein localization patterns in C. crescentus bacteria: A mechanism for asymmetric FtsZ ring positioning.
    Shtylla B
    J Theor Biol; 2017 Nov; 433():8-20. PubMed ID: 28826971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.