These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29616431)

  • 1. Cuttlebone as a Marine-Derived Material for Preparing Bone Grafts.
    Palaveniene A; Harkavenko V; Kharchenko V; Daugela P; Pranskunas M; Juodzbalys G; Babenko N; Liesiene J
    Mar Biotechnol (NY); 2018 Jun; 20(3):363-374. PubMed ID: 29616431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds.
    Palaveniene A; Songailiene K; Baniukaitiene O; Tamburaci S; Kimna C; Tihminlioğlu F; Liesiene J
    Int J Biol Macromol; 2020 Jun; 152():1194-1204. PubMed ID: 31759022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering.
    Ninan N; Muthiah M; Park IK; Elain A; Thomas S; Grohens Y
    Carbohydr Polym; 2013 Oct; 98(1):877-85. PubMed ID: 23987424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.
    Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A
    Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering.
    Huang Y; Wang J; Yang F; Shao Y; Zhang X; Dai K
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1034-1041. PubMed ID: 28415386
    [No Abstract]   [Full Text] [Related]  

  • 9. [Fabrication and analysis of a novel tissue engineered composite biphasic scaffold for annulus fibrosus and nucleus pulposus].
    Xu H; Xu B; Yang Q; Li X; Ma X; Xia Q; Zhang C; Wu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Apr; 27(4):475-80. PubMed ID: 23757878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering.
    Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY
    Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films.
    Cheng Y; Lu J; Liu S; Zhao P; Lu G; Chen J
    Carbohydr Polym; 2014 Jul; 107():57-64. PubMed ID: 24702918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired lightweight cellular materials--understanding effects of natural variation on mechanical properties.
    Cadman J; Chang CC; Chen J; Chen Y; Zhou S; Li W; Li Q
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3146-52. PubMed ID: 23706194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering.
    Khan MN; Islam JM; Khan MA
    J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process.
    Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW
    Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts.
    Garai S; Sinha A
    Colloids Surf B Biointerfaces; 2014 Mar; 115():182-90. PubMed ID: 24342800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.