BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29616442)

  • 1. Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals.
    Mizuguchi K; Horiike T; Matsumoto N; Ichikawa Y; Shinmyo Y; Kawasaki H
    Neurochem Res; 2018 May; 43(5):1075-1085. PubMed ID: 29616442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation.
    Kawasaki H; Toda T; Tanno K
    Biol Open; 2013 Jan; 2(1):95-100. PubMed ID: 23336081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.
    Martínez-Cerdeño V; Cunningham CL; Camacho J; Antczak JL; Prakash AN; Cziep ME; Walker AI; Noctor SC
    PLoS One; 2012; 7(1):e30178. PubMed ID: 22272298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Inner and Outer Fiber Layers in the Developing Cerebral Cortex of Gyrencephalic Ferrets.
    Saito K; Mizuguchi K; Horiike T; Dinh Duong TA; Shinmyo Y; Kawasaki H
    Cereb Cortex; 2019 Sep; 29(10):4303-4311. PubMed ID: 30541068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal Migration Dynamics in the Developing Ferret Cortex.
    Gertz CC; Kriegstein AR
    J Neurosci; 2015 Oct; 35(42):14307-15. PubMed ID: 26490868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin and development of subcortical U-fibers in gyrencephalic ferrets.
    Yoshino M; Saito K; Kawasaki K; Horiike T; Shinmyo Y; Kawasaki H
    Mol Brain; 2020 Mar; 13(1):37. PubMed ID: 32156301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals.
    Toda T; Shinmyo Y; Dinh Duong TA; Masuda K; Kawasaki H
    Sci Rep; 2016 Jul; 6():29578. PubMed ID: 27403992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.
    Reillo I; Borrell V
    Cereb Cortex; 2012 Sep; 22(9):2039-54. PubMed ID: 21988826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.
    Reillo I; de Juan Romero C; García-Cabezas MÁ; Borrell V
    Cereb Cortex; 2011 Jul; 21(7):1674-94. PubMed ID: 21127018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus.
    Di Curzio DL; Buist RJ; Del Bigio MR
    Exp Neurol; 2013 Oct; 248():112-28. PubMed ID: 23769908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI-based morphometric characterizations of sexual dimorphism of the cerebrum of ferrets (Mustela putorius).
    Sawada K; Horiuchi-Hirose M; Saito S; Aoki I
    Neuroimage; 2013 Dec; 83():294-306. PubMed ID: 23770407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gyrification of the cerebral cortex requires FGF signaling in the mammalian brain.
    Matsumoto N; Shinmyo Y; Ichikawa Y; Kawasaki H
    Elife; 2017 Nov; 6():. PubMed ID: 29132503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent.
    García-Moreno F; Vasistha NA; Trevia N; Bourne JA; Molnár Z
    Cereb Cortex; 2012 Feb; 22(2):482-92. PubMed ID: 22114081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early generation of glia in the intermediate zone of the developing cerebral cortex.
    Berman NE; Johnson JK; Klein RM
    Brain Res Dev Brain Res; 1997 Jul; 101(1-2):149-64. PubMed ID: 9263589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels.
    Martínez-Martínez MÁ; De Juan Romero C; Fernández V; Cárdenas A; Götz M; Borrell V
    Nat Commun; 2016 Jun; 7():11812. PubMed ID: 27264089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microglia regulate the number of neural precursor cells in the developing cerebral cortex.
    Cunningham CL; Martínez-Cerdeño V; Noctor SC
    J Neurosci; 2013 Mar; 33(10):4216-33. PubMed ID: 23467340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periventricular microglial cells interact with dividing precursor cells in the nonhuman primate and rodent prenatal cerebral cortex.
    Noctor SC; Penna E; Shepherd H; Chelson C; Barger N; Martínez-Cerdeño V; Tarantal AF
    J Comp Neurol; 2019 Jul; 527(10):1598-1609. PubMed ID: 30552670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation.
    Tomasello U; Klingler E; Niquille M; Mule N; Santinha AJ; de Vevey L; Prados J; Platt RJ; Borrell V; Jabaudon D; Dayer A
    Cell Rep; 2022 Feb; 38(7):110381. PubMed ID: 35172154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Investigation of the Mechanisms Underlying Development and Diseases of the Cerebral Cortex Using Mice and Ferrets].
    Kawasaki H
    Yakugaku Zasshi; 2021; 141(3):349-357. PubMed ID: 33642503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling.
    Fietz SA; Kelava I; Vogt J; Wilsch-Bräuninger M; Stenzel D; Fish JL; Corbeil D; Riehn A; Distler W; Nitsch R; Huttner WB
    Nat Neurosci; 2010 Jun; 13(6):690-9. PubMed ID: 20436478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.