BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29617158)

  • 1. Effects of static magnetic fields on bone microstructure and mechanical properties in mice.
    Zhang J; Meng X; Ding C; Shang P
    Electromagn Biol Med; 2018; 37(2):76-83. PubMed ID: 29617158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Osteoblast Differentiation and Iron Content in MC3T3-E1 Cells by Static Magnetic Field with Different Intensities.
    Yang J; Zhang J; Ding C; Dong D; Shang P
    Biol Trace Elem Res; 2018 Jul; 184(1):214-225. PubMed ID: 29052173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields.
    Zhang J; Ding C; Shang P
    Biol Trace Elem Res; 2014 Dec; 162(1-3):153-7. PubMed ID: 25328139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static magnetic field of 0.2-0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice.
    Yang J; Zhou S; Lv H; Wei M; Fang Y; Shang P
    Int J Radiat Biol; 2021; 97(5):746-754. PubMed ID: 33720796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron overload involved in the enhancement of unloading-induced bone loss by hypomagnetic field.
    Yang J; Meng X; Dong D; Xue Y; Chen X; Wang S; Shen Y; Zhang G; Shang P
    Bone; 2018 Sep; 114():235-245. PubMed ID: 29929042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moderate static magnetic field promotes fracture healing and regulates iron metabolism in mice.
    Wang S; Liu Y; Lou C; Cai C; Ren W; Liu J; Gong M; Shang P; Zhang H
    Biomed Eng Online; 2023 Nov; 22(1):107. PubMed ID: 37968671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disorder of Iron Metabolism Inhibits the Recovery of Unloading-Induced Bone Loss in Hypomagnetic Field.
    Xue Y; Yang J; Luo J; Ren L; Shen Y; Dong D; Fang Y; Hu L; Liu M; Liao Z; Li J; Fang Z; Shang P
    J Bone Miner Res; 2020 Jun; 35(6):1163-1173. PubMed ID: 31880821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static Magnetic Field (2-4 T) Improves Bone Microstructure and Mechanical Properties by Coordinating Osteoblast/Osteoclast Differentiation in Mice.
    Yang J; Wang S; Zhang G; Fang Y; Fang Z; Shang P; Zhang H
    Bioelectromagnetics; 2021 Apr; 42(3):200-211. PubMed ID: 33655538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A static magnetic field improves bone quality and balances the function of bone cells with regulation on iron metabolism and redox status in type 1 diabetes.
    Lv H; Wang Y; Zhen C; Liu J; Chen X; Zhang G; Yao W; Guo H; Wei Y; Wang S; Yang J; Shang P
    FASEB J; 2023 Jul; 37(7):e22985. PubMed ID: 37249350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of static magnetic fields on bone.
    Zhang J; Ding C; Ren L; Zhou Y; Shang P
    Prog Biophys Mol Biol; 2014 May; 114(3):146-52. PubMed ID: 24556024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide modulates the responses of osteoclast formation to static magnetic fields.
    Zhang J; Ding C; Meng X; Shang P
    Electromagn Biol Med; 2018; 37(1):23-34. PubMed ID: 29235883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of osteoclast differentiation by static magnetic fields.
    Zhang J; Meng X; Ding C; Xie L; Yang P; Shang P
    Electromagn Biol Med; 2017; 36(1):8-19. PubMed ID: 27355421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life on Magnet: Long-Term Exposure of Moderate Static Magnetic Fields on the Lifespan and Healthspan of Mice.
    Fan Y; Yu X; Yu B; Ji X; Tian X; Song C; Zhang X
    Antioxidants (Basel); 2022 Dec; 12(1):. PubMed ID: 36670970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioeffects of moderate-intensity static magnetic fields on cell cultures.
    Dini L; Abbro L
    Micron; 2005; 36(3):195-217. PubMed ID: 15725590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation.
    Zhang L; Ji X; Yang X; Zhang X
    Oncotarget; 2017 Feb; 8(8):13126-13141. PubMed ID: 28061454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of static magnetic field on cell biomechanical property and membrane ultrastructure.
    Wang Z; Hao F; Ding C; Yang Z; Shang P
    Bioelectromagnetics; 2014 May; 35(4):251-61. PubMed ID: 24619812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of moderate static magnetic fields on the lipogenesis and lipolysis in different genders of Caenorhabditis elegans.
    Liu Z; Cheng L; Yang B; Cao Z; Sun M; Feng Y; Xu A
    Ecotoxicol Environ Saf; 2023 Jul; 259():115005. PubMed ID: 37210995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental abnormality induced by strong static magnetic field in Caenorhabditis elegans.
    Wang L; Du H; Guo X; Wang X; Wang M; Wang Y; Wang M; Chen S; Wu L; Xu A
    Bioelectromagnetics; 2015 Apr; 36(3):178-89. PubMed ID: 25754967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety evaluation of mice exposed to 7.0-33.0 T high-static magnetic fields.
    Tian X; Lv Y; Fan Y; Wang Z; Yu B; Song C; Lu Q; Xi C; Pi L; Zhang X
    J Magn Reson Imaging; 2021 Jun; 53(6):1872-1884. PubMed ID: 33382516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myotube orientation using strong static magnetic fields.
    Sakurai T; Hashimoto A; Kiyokawa T; Kikuchi K; Miyakoshi J
    Bioelectromagnetics; 2012 Jul; 33(5):421-7. PubMed ID: 22213103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.