BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29617876)

  • 1. A novel method for improved accuracy of transcription factor binding site prediction.
    Khamis AM; Motwalli O; Oliva R; Jankovic BR; Medvedeva YA; Ashoor H; Essack M; Gao X; Bajic VB
    Nucleic Acids Res; 2018 Jul; 46(12):e72. PubMed ID: 29617876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMQIT: a machine learning approach for energy based PWM matrix quality improvement.
    Smolinska K; Pacholczyk M
    Biol Direct; 2017 Aug; 12(1):17. PubMed ID: 28764727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree-based position weight matrix approach to model transcription factor binding site profiles.
    Bi Y; Kim H; Gupta R; Davuluri RV
    PLoS One; 2011; 6(9):e24210. PubMed ID: 21912677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LASAGNA: a novel algorithm for transcription factor binding site alignment.
    Lee C; Huang CH
    BMC Bioinformatics; 2013 Mar; 14():108. PubMed ID: 23522376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models.
    Kulakovskiy IV; Medvedeva YA; Schaefer U; Kasianov AS; Vorontsov IE; Bajic VB; Makeev VJ
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D195-202. PubMed ID: 23175603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.
    Narad P; Kumar A; Chakraborty A; Patni P; Sengupta A; Wadhwa G; Upadhyaya KC
    Interdiscip Sci; 2017 Sep; 9(3):378-391. PubMed ID: 27052996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models.
    Kulakovskiy IV; Vorontsov IE; Yevshin IS; Soboleva AV; Kasianov AS; Ashoor H; Ba-Alawi W; Bajic VB; Medvedeva YA; Kolpakov FA; Makeev VJ
    Nucleic Acids Res; 2016 Jan; 44(D1):D116-25. PubMed ID: 26586801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The next generation of transcription factor binding site prediction.
    Mathelier A; Wasserman WW
    PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data.
    Levitsky VG; Kulakovskiy IV; Ershov NI; Oshchepkov DY; Makeev VJ; Hodgman TC; Merkulova TI
    BMC Genomics; 2014 Jan; 15(1):80. PubMed ID: 24472686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible integrative approach based on random forest improves prediction of transcription factor binding sites.
    Hooghe B; Broos S; van Roy F; De Bleser P
    Nucleic Acids Res; 2012 Aug; 40(14):e106. PubMed ID: 22492513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis.
    Kulakovskiy IV; Vorontsov IE; Yevshin IS; Sharipov RN; Fedorova AD; Rumynskiy EI; Medvedeva YA; Magana-Mora A; Bajic VB; Papatsenko DA; Kolpakov FA; Makeev VJ
    Nucleic Acids Res; 2018 Jan; 46(D1):D252-D259. PubMed ID: 29140464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of TRANSFAC matrices using multiple local alignment of transcription factor binding site sequences.
    Fu Y; Weng Z
    Genome Inform; 2005; 16(1):68-72. PubMed ID: 16362908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing coverage of transcription factor position weight matrices through domain-level homology.
    Bernard B; Thorsson V; Rovira H; Shmulevich I
    PLoS One; 2012; 7(8):e42779. PubMed ID: 22952610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices.
    Oh YM; Kim JK; Choi S; Yoo JY
    Nucleic Acids Res; 2012 Mar; 40(5):e38. PubMed ID: 22187154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions.
    Levitsky VG; Ignatieva EV; Ananko EA; Turnaev II; Merkulova TI; Kolchanov NA; Hodgman TC
    BMC Bioinformatics; 2007 Dec; 8():481. PubMed ID: 18093302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTF: a CRF-based transcription factor binding sites finding system.
    He Y; Zhang Y; Zheng G; Wei C
    BMC Genomics; 2012; 13 Suppl 8(Suppl 8):S18. PubMed ID: 23282203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic, large-scale comparison of transcription factor binding site models.
    Hombach D; Schwarz JM; Robinson PN; Schuelke M; Seelow D
    BMC Genomics; 2016 May; 17():388. PubMed ID: 27209209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.