BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29617876)

  • 21. A systematic, large-scale comparison of transcription factor binding site models.
    Hombach D; Schwarz JM; Robinson PN; Schuelke M; Seelow D
    BMC Genomics; 2016 May; 17():388. PubMed ID: 27209209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. abc4pwm: affinity based clustering for position weight matrices in applications of DNA sequence analysis.
    Ali O; Farooq A; Yang M; Jin VX; Bjørås M; Wang J
    BMC Bioinformatics; 2022 Mar; 23(1):83. PubMed ID: 35240993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence.
    Ouyang N; Boyle AP
    Genome Res; 2020 Jul; 30(7):1040-1046. PubMed ID: 32660981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A structural-based strategy for recognition of transcription factor binding sites.
    Xu B; Schones DE; Wang Y; Liang H; Li G
    PLoS One; 2013; 8(1):e52460. PubMed ID: 23320072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Bayesian search for transcriptional motifs.
    Miller AK; Print CG; Nielsen PM; Crampin EJ
    PLoS One; 2010 Nov; 5(11):e13897. PubMed ID: 21124986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning position weight matrices from sequence and expression data.
    Chen X; Guo L; Fan Z; Jiang T
    Comput Syst Bioinformatics Conf; 2007; 6():249-60. PubMed ID: 17951829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites.
    Santolini M; Mora T; Hakim V
    PLoS One; 2014; 9(6):e99015. PubMed ID: 24926895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization.
    Lee C; Huang CH
    Biotechniques; 2013 Mar; 54(3):141-53. PubMed ID: 23599922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SiTaR: a novel tool for transcription factor binding site prediction.
    Fazius E; Shelest V; Shelest E
    Bioinformatics; 2011 Oct; 27(20):2806-11. PubMed ID: 21893518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable scaling of position weight matrices for binding strength comparisons between transcription factors.
    Ma X; Ezer D; Navarro C; Adryan B
    BMC Bioinformatics; 2015 Aug; 16():265. PubMed ID: 26289072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized position weight matrices in prediction of novel putative binding sites for transcription factors in the Drosophila melanogaster genome.
    Morozov VY; Ioshikhes IP
    PLoS One; 2013; 8(8):e68712. PubMed ID: 23936309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PiDNA: Predicting protein-DNA interactions with structural models.
    Lin CK; Chen CY
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W523-30. PubMed ID: 23703214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient online transcription factor binding site adjustment by integrating transitive graph projection with MoRAine 2.0.
    Wittkop T; Rahmann S; Baumbach J
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs.
    Garcia-Alcalde F; Blanco A; Shepherd AJ
    BMC Bioinformatics; 2010 Nov; 11():551. PubMed ID: 21059262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.