These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29617928)

  • 1. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants.
    Wang M; Tai C; E W; Wei L
    Nucleic Acids Res; 2018 Jun; 46(11):e69. PubMed ID: 29617928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of models in predicting the effects of SNPs on TF-DNA binding using large-scale in vitro and in vivo data.
    Han D; Li Y; Wang L; Liang X; Miao Y; Li W; Wang S; Wang Z
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38517697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional consequences of variation in transcription factor binding.
    Cusanovich DA; Pavlovic B; Pritchard JK; Gilad Y
    PLoS Genet; 2014 Mar; 10(3):e1004226. PubMed ID: 24603674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Intensities of Transcription Factor-DNA Binding by Learning From an Ensemble of Protein Binding Microarrays.
    Quan L; Mei J; He R; Sun X; Nie L; Li K; Lyu Q
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2811-2819. PubMed ID: 33571101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.
    Zeng H; Hashimoto T; Kang DD; Gifford DK
    Bioinformatics; 2016 Feb; 32(4):490-6. PubMed ID: 26476779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepTFactor: A deep learning-based tool for the prediction of transcription factors.
    Kim GB; Gao Y; Palsson BO; Lee SY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of deep learning approaches for modeling transcription factor sequence specificity.
    Zhang Y; Mo Q; Xue L; Luo J
    Genomics; 2021 Nov; 113(6):3774-3781. PubMed ID: 34534646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic interpretation of non-coding variants for discovering transcriptional regulators of drug response.
    Xie X; Hanson C; Sinha S
    BMC Biol; 2019 Jul; 17(1):62. PubMed ID: 31362726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parsing regulatory DNA: general tasks, techniques, and the PhyloGibbs approach.
    Siddharthan R
    J Biosci; 2007 Aug; 32(5):863-70. PubMed ID: 17914228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin interaction-aware gene regulatory modeling with graph attention networks.
    Karbalayghareh A; Sahin M; Leslie CS
    Genome Res; 2022 May; 32(5):930-944. PubMed ID: 35396274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo.
    Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS
    Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QBiC-Pred: quantitative predictions of transcription factor binding changes due to sequence variants.
    Martin V; Zhao J; Afek A; Mielko Z; Gordân R
    Nucleic Acids Res; 2019 Jul; 47(W1):W127-W135. PubMed ID: 31114870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease-associated non-coding variants alter NKX2-5 DNA-binding affinity.
    Peña-Martínez EG; Rivera-Madera A; Pomales-Matos DA; Sanabria-Alberto L; Rosario-Cañuelas BM; Rodríguez-Ríos JM; Carrasquillo-Dones EA; Rodríguez-Martínez JA
    Biochim Biophys Acta Gene Regul Mech; 2023 Mar; 1866(1):194906. PubMed ID: 36690178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.