These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29617963)

  • 1. Detecting hidden batch factors through data-adaptive adjustment for biological effects.
    Yi H; Raman AT; Zhang H; Allen GI; Liu Z
    Bioinformatics; 2018 Apr; 34(7):1141-1147. PubMed ID: 29617963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GDASC: a GPU parallel-based web server for detecting hidden batch factors.
    Wang X; Yi H; Wang J; Liu Z; Yin Y; Zhang H
    Bioinformatics; 2020 Aug; 36(14):4211-4213. PubMed ID: 32386292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigating the adverse impact of batch effects in sample pattern detection.
    Fei T; Zhang T; Shi W; Yu T
    Bioinformatics; 2018 Aug; 34(15):2634-2641. PubMed ID: 29506177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data.
    Lawlor N; Marquez EJ; Lee D; Ucar D
    Bioinformatics; 2020 Jun; 36(11):3582-3584. PubMed ID: 32119082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment.
    Fei T; Yu T
    Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.
    Shen Y; Chu Q; Timko MP; Fan L
    Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral clustering based on learning similarity matrix.
    Park S; Zhao H
    Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets.
    Song Q; Su J; Miller LD; Zhang W
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):330-341. PubMed ID: 33359676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement.
    Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.