These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29617997)

  • 21. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of end products on fermentation profiles in Clostridium carboxidivorans P7 for syngas fermentation.
    Zhang J; Taylor S; Wang Y
    Bioresour Technol; 2016 Oct; 218():1055-63. PubMed ID: 27459682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19.
    Jang YS; Malaviya A; Lee SY
    Biotechnol Bioeng; 2013 Jun; 110(6):1646-53. PubMed ID: 23335317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon monoxide conversion with Clostridium aceticum.
    Mayer A; Schädler T; Trunz S; Stelzer T; Weuster-Botz D
    Biotechnol Bioeng; 2018 Nov; 115(11):2740-2750. PubMed ID: 30063246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity.
    Richter H; Loftus SE; Angenent LT
    Environ Technol; 2013; 34(13-16):1983-94. PubMed ID: 24350452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on Syngas Fermentation With
    Rückel A; Hannemann J; Maierhofer C; Fuchs A; Weuster-Botz D
    Front Microbiol; 2021; 12():655390. PubMed ID: 33936011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas.
    Sun X; Atiyeh HK; Kumar A; Zhang H; Tanner RS
    Bioresour Technol; 2018 Oct; 265():128-138. PubMed ID: 29886351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of excess sludge by acetone-butanol-ethanol fermentation employing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564).
    Kobayashi G; Eto K; Tashiro Y; Okubo K; Sonomoto K; Ishizaki A
    J Biosci Bioeng; 2005 May; 99(5):517-9. PubMed ID: 16233826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles.
    Kim YK; Park SE; Lee H; Yun JY
    Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO
    Lauer I; Philipps G; Jennewein S
    Microb Cell Fact; 2022 May; 21(1):85. PubMed ID: 35568911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochar amended microbial conversion of C1 gases to ethanol and butanol: Effects of biochar feedstock type and processing temperature.
    Sun X; Thunuguntla R; Zhang H; Atiyeh H
    Bioresour Technol; 2022 Sep; 360():127573. PubMed ID: 35792327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract.
    Maddipati P; Atiyeh HK; Bellmer DD; Huhnke RL
    Bioresour Technol; 2011 Jun; 102(11):6494-501. PubMed ID: 21474306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.
    Abubackar HN; Veiga MC; Kennes C
    Bioresour Technol; 2015 Jun; 186():122-127. PubMed ID: 25812815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of butanol from starch-based waste packing peanuts and agricultural waste.
    Jesse TW; Ezeji TC; Qureshi N; Blaschek HP
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):117-23. PubMed ID: 12242632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon.
    Woo JE; Jang YS
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8283-8292. PubMed ID: 31396679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.
    Yun SI; Gang SJ; Ro HM; Lee MJ; Choi WJ; Hong SG; Kang KK
    Bioprocess Biosyst Eng; 2013 May; 36(5):591-5. PubMed ID: 22940807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide.
    Schulz S; Molitor B; Angenent LT
    Bioresour Technol; 2023 Feb; 369():128387. PubMed ID: 36435417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum.
    Malaviya A; Jang YS; Lee SY
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1485-94. PubMed ID: 22052388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.