These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29618029)

  • 1. The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia.
    Jordan VK; Beck TF; Hernandez-Garcia A; Kundert PN; Kim BJ; Jhangiani SN; Gambin T; Starkovich M; Punetha J; Paine IS; Posey JE; Li AH; Muzny D; Hsu CW; Lashua AJ; Sun X; Fernandes CJ; Dickinson ME; Lally KP; Gibbs RA; Boerwinkle E; Lupski JR; Scott DA
    Hum Mol Genet; 2018 Jun; 27(12):2064-2075. PubMed ID: 29618029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesenchymal expression of the FRAS1/FREM2 gene unit is decreased in the developing fetal diaphragm of nitrofen-induced congenital diaphragmatic hernia.
    Takahashi T; Friedmacher F; Zimmer J; Puri P
    Pediatr Surg Int; 2016 Feb; 32(2):135-40. PubMed ID: 26519041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice.
    Beck TF; Veenma D; Shchelochkov OA; Yu Z; Kim BJ; Zaveri HP; van Bever Y; Choi S; Douben H; Bertin TK; Patel PI; Lee B; Tibboel D; de Klein A; Stockton DW; Justice MJ; Scott DA
    Hum Mol Genet; 2013 Mar; 22(5):1026-38. PubMed ID: 23221805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Expression of FRAS1-Related Extracellular Matrix 1 Is Decreased in Nitrofen-Induced Congenital Diaphragmatic Hernia.
    Takahashi T; Friedmacher F; Puri P
    Eur J Pediatr Surg; 2016 Feb; 26(1):81-5. PubMed ID: 26382659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basement membrane localization of Frem3 is independent of the Fras1/Frem1/Frem2 protein complex within the sublamina densa.
    Petrou P; Pavlakis E; Dalezios Y; Chalepakis G
    Matrix Biol; 2007 Oct; 26(8):652-8. PubMed ID: 17596926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakdown of the reciprocal stabilization of QBRICK/Frem1, Fras1, and Frem2 at the basement membrane provokes Fraser syndrome-like defects.
    Kiyozumi D; Sugimoto N; Sekiguchi K
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11981-6. PubMed ID: 16880404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homozygous mutation p.Arg2167Trp in FREM2 causes isolated cryptophthalmos.
    Yu Q; Lin B; Xie S; Gao S; Li W; Liu Y; Wang H; Huang D; Xie Z
    Hum Mol Genet; 2018 Jul; 27(13):2357-2366. PubMed ID: 29688405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel loss of function variants in FRAS1 AND FREM2 underlie renal agenesis in consanguineous families.
    Al-Hamed MH; Sayer JA; Alsahan N; Tulbah M; Kurdi W; Ambusaidi Q; Ali W; Imtiaz F
    J Nephrol; 2021 Jun; 34(3):893-900. PubMed ID: 32643034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract.
    Kohl S; Hwang DY; Dworschak GC; Hilger AC; Saisawat P; Vivante A; Stajic N; Bogdanovic R; Reutter HM; Kehinde EO; Tasic V; Hildebrandt F
    J Am Soc Nephrol; 2014 Sep; 25(9):1917-22. PubMed ID: 24700879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1.
    Slavotinek AM; Baranzini SE; Schanze D; Labelle-Dumais C; Short KM; Chao R; Yahyavi M; Bijlsma EK; Chu C; Musone S; Wheatley A; Kwok PY; Marles S; Fryns JP; Maga AM; Hassan MG; Gould DB; Madireddy L; Li C; Cox TC; Smyth I; Chudley AE; Zenker M
    J Med Genet; 2011 Jun; 48(6):375-82. PubMed ID: 21507892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential localization profile of Fras1/Frem proteins in epithelial basement membranes of newborn and adult mice.
    Pavlakis E; Makrygiannis AK; Chiotaki R; Chalepakis G
    Histochem Cell Biol; 2008 Oct; 130(4):785-93. PubMed ID: 18563433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fras1/Frem family of extracellular matrix proteins: structure, function, and association with Fraser syndrome and the mouse bleb phenotype.
    Petrou P; Makrygiannis AK; Chalepakis G
    Connect Tissue Res; 2008; 49(3):277-82. PubMed ID: 18661360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Fras1/Frem proteins in the structure and function of basement membrane.
    Pavlakis E; Chiotaki R; Chalepakis G
    Int J Biochem Cell Biol; 2011 Apr; 43(4):487-95. PubMed ID: 21182980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMACO is a component of the basement membrane-associated Fraser complex.
    Richardson RJ; Gebauer JM; Zhang JL; Kobbe B; Keene DR; Karlsen KR; Richetti S; Wohl AP; Sengle G; Neiss WF; Paulsson M; Hammerschmidt M; Wagener R
    J Invest Dermatol; 2014 May; 134(5):1313-1322. PubMed ID: 24232570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs.
    Jadeja S; Smyth I; Pitera JE; Taylor MS; van Haelst M; Bentley E; McGregor L; Hopkins J; Chalepakis G; Philip N; Perez Aytes A; Watt FM; Darling SM; Jackson I; Woolf AS; Scambler PJ
    Nat Genet; 2005 May; 37(5):520-5. PubMed ID: 15838507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FBN1 contributing to familial congenital diaphragmatic hernia.
    Beck TF; Campeau PM; Jhangiani SN; Gambin T; Li AH; Abo-Zahrah R; Jordan VK; Hernandez-Garcia A; Wiszniewski WK; Muzny D; Gibbs RA; Boerwinkle E; Lupski JR; Lee B; Reardon W; Scott DA
    Am J Med Genet A; 2015 Apr; 167A(4):831-6. PubMed ID: 25736269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptophthalmos, dental anomalies, oral vestibule defect, and a novel FREM2 mutation.
    Kantaputra PN; Wangtiraumnuay N; Ngamphiw C; Olsen B; Intachai W; Tucker AS; Tongsima S
    J Hum Genet; 2022 Feb; 67(2):115-118. PubMed ID: 34408272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel frem1-related mouse phenotypes and evidence of genetic interactions with gata4 and slit3.
    Beck TF; Shchelochkov OA; Yu Z; Kim BJ; Hernández-García A; Zaveri HP; Bishop C; Overbeek PA; Stockton DW; Justice MJ; Scott DA
    PLoS One; 2013; 8(3):e58830. PubMed ID: 23536828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1.
    Wat MJ; Beck TF; Hernández-García A; Yu Z; Veenma D; Garcia M; Holder AM; Wat JJ; Chen Y; Mohila CA; Lally KP; Dickinson M; Tibboel D; de Klein A; Lee B; Scott DA
    Hum Mol Genet; 2012 Sep; 21(18):4115-25. PubMed ID: 22723016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying phenotypic expansions for congenital diaphragmatic hernia plus (CDH+) using DECIPHER data.
    Hardcastle A; Berry AM; Campbell IM; Zhao X; Liu P; Gerard AE; Rosenfeld JA; Sisoudiya SD; Hernandez-Garcia A; Loddo S; Di Tommaso S; Novelli A; Dentici ML; Capolino R; Digilio MC; Graziani L; Rustad CF; Neas K; Ferrero GB; Brusco A; Di Gregorio E; Wellesley D; Beneteau C; Joubert M; Van Den Bogaert K; Boogaerts A; McMullan DJ; Dean J; Giuffrida MG; Bernardini L; Varghese V; Shannon NL; Harrison RE; Lam WWK; McKee S; Turnpenny PD; Cole T; Morton J; Eason J; Jones MC; Hall R; Wright M; Horridge K; Shaw CA; Chung WK; Scott DA
    Am J Med Genet A; 2022 Oct; 188(10):2958-2968. PubMed ID: 35904974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.