These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29618199)

  • 1. Sc
    Kal S; Draksharapu A; Que L
    J Am Chem Soc; 2018 May; 140(17):5798-5804. PubMed ID: 29618199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid p
    Xu S; Draksharapu A; Rasheed W; Que L
    J Am Chem Soc; 2019 Oct; 141(40):16093-16107. PubMed ID: 31513741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Studies on the Oxoiron(IV) Complex with Tetradentate Aminopyridine Ligand PDP*: Restoration of Catalytic Activity by Reduction with H
    Piquette MC; Kryatov SV; Rybak-Akimova EV
    Inorg Chem; 2019 Oct; 58(19):13382-13393. PubMed ID: 31513388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?
    Ansari A; Rajaraman G
    Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron catalyzed competitive olefin oxidation and ipso-hydroxylation of benzoic acids: further evidence for an Fe(V)═O oxidant.
    Das P; Que L
    Inorg Chem; 2010 Oct; 49(20):9479-85. PubMed ID: 20866083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromatic hydroxylation at a non-heme iron center: observed intermediates and insights into the nature of the active species.
    Makhlynets OV; Rybak-Akimova EV
    Chemistry; 2010 Dec; 16(47):13995-4006. PubMed ID: 21117047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Which is the real oxidant in competitive ligand self-hydroxylation and substrate oxidation-a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one?
    Cao X; Song H; Li XX; Qiao QA; Zhao Y; Wang Y
    Dalton Trans; 2022 May; 51(19):7571-7580. PubMed ID: 35506913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant.
    Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M
    Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density functional study on a biomimetic non-heme iron catalyst: insights into alkane hydroxylation by a formally HO-FeV=O oxidant.
    Bassan A; Blomberg MR; Siegbahn PE; Que L
    Chemistry; 2005 Jan; 11(2):692-705. PubMed ID: 15580652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of an Fe(III)-OOH coin.
    Chen K; Costas M; Kim J; Tipton AK; Que L
    J Am Chem Soc; 2002 Mar; 124(12):3026-35. PubMed ID: 11902894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of a Non-Heme Fe
    Kal S; Que L
    Angew Chem Int Ed Engl; 2019 Jun; 58(25):8484-8488. PubMed ID: 30997707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-valent nonheme iron. Two distinct iron(IV) species derived from a common iron(II) precursor.
    Jensen MP; Costas M; Ho RY; Kaizer J; Mairata i Payeras A; Münck E; Que L; Rohde JU; Stubna A
    J Am Chem Soc; 2005 Aug; 127(30):10512-25. PubMed ID: 16045338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonheme Diiron Oxygenase Mimic That Generates a Diferric-Peroxo Intermediate Capable of Catalytic Olefin Epoxidation and Alkane Hydroxylation Including Cyclohexane.
    Oloo WN; Szávuly M; Kaizer J; Que L
    Inorg Chem; 2022 Jan; 61(1):37-41. PubMed ID: 34894683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond.
    Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J
    Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chameleon catalyst for nonheme iron-promoted olefin oxidation.
    Iyer SR; Javadi MM; Feng Y; Hyun MY; Oloo WN; Kim C; Que L
    Chem Commun (Camb); 2014 Nov; 50(89):13777-80. PubMed ID: 25251577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.