These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29618781)

  • 1. Recycling Waste Soot from Merchant Ships to Produce Anode Materials for Rechargeable Lithium-Ion Batteries.
    Lee WJ; Kim HV; Choi JH; Panomsuwan G; Lee YC; Rho BS; Kang J
    Sci Rep; 2018 Apr; 8(1):5601. PubMed ID: 29618781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Black Carbon Emitted from Diesel-Powered Merchant Ships to Novel Conductive Carbon Black as Anodic Material for Lithium Ion Batteries.
    Choi JH; Kim DY; Lee WJ; Kang J
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31500295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of soot discharged from the combustion of marine gas oil as an anode material for lithium ion batteries.
    Baek HM; Kim DY; Lee WJ; Kang J
    RSC Adv; 2020 Oct; 10(60):36478-36484. PubMed ID: 35517955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Positive Effect of ZnS in Waste Tire Carbon as Anode for Lithium-Ion Batteries.
    Wang X; Zhou L; Li J; Han N; Li X; Liu G; Jia D; Ma Z; Song G; Zhu X; Peng Z; Zhang L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33923132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Highly Graphitized Carbon-Wrapped Li3VO4 Nanoparticles with Hierarchically Porous Structure as a Long Life and High Capacity Anode for Lithium-Ion Batteries.
    Zhao D; Cao M
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25084-93. PubMed ID: 26502345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.
    Badi N; Erra AR; Hernandez FC; Okonkwo AO; Hobosyan M; Martirosyan KS
    Nanoscale Res Lett; 2014; 9(1):360. PubMed ID: 25114651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method.
    Gong H; Xiao H; Ye L; Ou X
    Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flash Recycling of Graphite Anodes.
    Chen W; Salvatierra RV; Li JT; Kittrell C; Beckham JL; Wyss KM; La N; Savas PE; Ge C; Advincula PA; Scotland P; Eddy L; Deng B; Yuan Z; Tour JM
    Adv Mater; 2023 Feb; 35(8):e2207303. PubMed ID: 36462512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes.
    Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries.
    Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur-doped honeycomb-like carbon with outstanding electrochemical performance as an anode material for lithium and sodium ion batteries.
    Wan H; Hu X
    J Colloid Interface Sci; 2020 Jan; 558():242-250. PubMed ID: 31593857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waste tire derived carbon as potential anode for lithium-ion batteries.
    Veldevi T; Raghu S; Kalaivani RA; Shanmugharaj AM
    Chemosphere; 2022 Feb; 288(Pt 1):132438. PubMed ID: 34619259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Capacity Nano-Sized Carbon Spheres for Lithium-Ion Battery Anode Materials.
    Wang Y; Yu G; Chen X; Wang A
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30970618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.
    Sun X; Shao C; Zhang F; Li Y; Wu QH; Yang Y
    Front Chem; 2018; 6():166. PubMed ID: 29868567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-Catalyzed Graphitic Carbon Materials from Biomass Resources as Anodes for Lithium-Ion Batteries.
    Gomez-Martin A; Martinez-Fernandez J; Ruttert M; Heckmann A; Winter M; Placke T; Ramirez-Rico J
    ChemSusChem; 2018 Aug; 11(16):2776-2787. PubMed ID: 29870144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries.
    Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H
    J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Potential of Carbonized Nano-Si within G@C@Si Anodes for Lithium-Ion Rechargeable Batteries.
    Maddipatla R; Loka C; Lee KS
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58437-58450. PubMed ID: 38079573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Nanoarchitectonics with CoS
    Li T; Dong H; Shi Z; Yue H; Yin Y; Li X; Zhang H; Wu X; Li B; Yang S
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sandwich-Like Co₃O₄/Graphene Nanocomposites as Anode Material for Lithium Ion Batteries.
    Mu JC; Wang EQ; Zhang YL; Zhang LP
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7819-7825. PubMed ID: 31196294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.