BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29618968)

  • 1. Managing Clutter in a High Pulse Rate Echolocation System.
    Isbell J; Horiuchi TK
    Front Neurosci; 2018; 12():177. PubMed ID: 29618968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosonar interpulse intervals and pulse-echo ambiguity in four species of echolocating bats.
    Simmons JA; Hiryu S; Shriram U
    J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30877230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Echolocating Big Brown Bats, Eptesicus fuscus, Modulate Pulse Intervals to Overcome Range Ambiguity in Cluttered Surroundings.
    Wheeler AR; Fulton KA; Gaudette JE; Simmons RA; Matsuo I; Simmons JA
    Front Behav Neurosci; 2016; 10():125. PubMed ID: 27445723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bats use echo harmonic structure to distinguish their targets from background clutter.
    Bates ME; Simmons JA; Zorikov TV
    Science; 2011 Jul; 333(6042):627-30. PubMed ID: 21798949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of perceptual dimensions of insect prey during terminal pursuit by echolocating bats.
    Simmons JA; Dear SP; Ferragamo MJ; Haresign T; Fritz J
    Biol Bull; 1996 Aug; 191(1):109-21. PubMed ID: 8776847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpulse interval modulation by echolocating big brown bats (Eptesicus fuscus) in different densities of obstacle clutter.
    Petrites AE; Eng OS; Mowlds DS; Simmons JA; DeLong CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jun; 195(6):603-17. PubMed ID: 19322570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How frequency hopping suppresses pulse-echo ambiguity in bat biosonar.
    Ming C; Bates ME; Simmons JA
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17288-17295. PubMed ID: 32632013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Big brown bats (Eptesicus fuscus) reveal diverse strategies for sonar target tracking in clutter.
    Mao B; Aytekin M; Wilkinson GS; Moss CF
    J Acoust Soc Am; 2016 Sep; 140(3):1839. PubMed ID: 27914429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
    Greiter W; Firzlaff U
    J Neurophysiol; 2017 Jun; 117(6):2113-2124. PubMed ID: 28275060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial release from simultaneous echo masking in bat sonar.
    Warnecke M; Bates ME; Flores V; Simmons JA
    J Acoust Soc Am; 2014 May; 135(5):3077-85. PubMed ID: 24926503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.
    Goerlitz HR; Genzel D; Wiegrebe L
    Behav Processes; 2012 Jan; 89(1):61-7. PubMed ID: 22085788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus.
    Simmons JA; Freedman EG; Stevenson SB; Chen L; Wohlgenant TJ
    J Acoust Soc Am; 1989 Oct; 86(4):1318-32. PubMed ID: 2808907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: range-dependent sonar signal design, Doppler tolerance and evidence for 'acoustic focussing'.
    Holderied MW; Jones G; von Helversen O
    J Exp Biol; 2006 May; 209(Pt 10):1816-26. PubMed ID: 16651548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus.
    MacĂ­as S; Luo J; Moss CF
    J Neurophysiol; 2018 Sep; 120(3):1323-1339. PubMed ID: 29924708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J; Moss CF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10978-10983. PubMed ID: 28973851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of emission rates improves sonar performance by flying bats.
    Adams AM; Davis K; Smotherman M
    Sci Rep; 2017 Jan; 7():41641. PubMed ID: 28139707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects.
    Genzel D; Geberl C; Dera T; Wiegrebe L
    J Exp Biol; 2012 Jul; 215(Pt 13):2226-35. PubMed ID: 22675183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Echolocation while drinking: Pulse-timing strategies by high- and low-frequency FM bats.
    Kloepper LN; Simmons AM; Simmons JA
    PLoS One; 2019; 14(12):e0226114. PubMed ID: 31869369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity for echo spectral interference and delay in the auditory cortex of the big brown bat Eptesicus fuscus.
    Sanderson MI; Simmons JA
    J Neurophysiol; 2002 Jun; 87(6):2823-34. PubMed ID: 12037185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey.
    Geipel I; Steckel J; Tschapka M; Vanderelst D; Schnitzler HU; Kalko EKV; Peremans H; Simon R
    Curr Biol; 2019 Aug; 29(16):2731-2736.e3. PubMed ID: 31378617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.