These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 29619038)
1. Optimized Use of Low-Depth Genotyping-by-Sequencing for Genomic Prediction Among Multi-Parental Family Pools and Single Plants in Perennial Ryegrass ( Cericola F; Lenk I; Fè D; Byrne S; Jensen CS; Pedersen MG; Asp T; Jensen J; Janss L Front Plant Sci; 2018; 9():369. PubMed ID: 29619038 [TBL] [Abstract][Full Text] [Related]
2. Estimating genomic heritabilities at the level of family-pool samples of perennial ryegrass using genotyping-by-sequencing. Ashraf BH; Byrne S; Fé D; Czaban A; Asp T; Pedersen MG; Lenk I; Roulund N; Didion T; Jensen CS; Jensen J; Janss LL Theor Appl Genet; 2016 Jan; 129(1):45-52. PubMed ID: 26407618 [TBL] [Abstract][Full Text] [Related]
3. Genomic Prediction in Tetraploid Ryegrass Using Allele Frequencies Based on Genotyping by Sequencing. Guo X; Cericola F; Fè D; Pedersen MG; Lenk I; Jensen CS; Jensen J; Janss LL Front Plant Sci; 2018; 9():1165. PubMed ID: 30158944 [TBL] [Abstract][Full Text] [Related]
4. Low-depth genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of high quality genotypes and the accuracy of imputation. Brouard JS; Boyle B; Ibeagha-Awemu EM; Bissonnette N BMC Genet; 2017 Apr; 18(1):32. PubMed ID: 28381212 [TBL] [Abstract][Full Text] [Related]
5. Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations. Wang X; Su G; Hao D; Lund MS; Kadarmideen HN J Anim Sci Biotechnol; 2020; 11():3. PubMed ID: 31921417 [TBL] [Abstract][Full Text] [Related]
6. Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing. Faville MJ; Ganesh S; Cao M; Jahufer MZZ; Bilton TP; Easton HS; Ryan DL; Trethewey JAK; Rolston MP; Griffiths AG; Moraga R; Flay C; Schmidt J; Tan R; Barrett BA Theor Appl Genet; 2018 Mar; 131(3):703-720. PubMed ID: 29264625 [TBL] [Abstract][Full Text] [Related]
10. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Bolormaa S; Gore K; van der Werf JH; Hayes BJ; Daetwyler HD Anim Genet; 2015 Oct; 46(5):544-56. PubMed ID: 26360638 [TBL] [Abstract][Full Text] [Related]
11. Towards a Cost-Effective Implementation of Genomic Prediction Based on Low Coverage Whole Genome Sequencing in Dezhou Donkey. Zhao C; Teng J; Zhang X; Wang D; Zhang X; Li S; Jiang X; Li H; Ning C; Zhang Q Front Genet; 2021; 12():728764. PubMed ID: 34804115 [TBL] [Abstract][Full Text] [Related]
12. Genomic dissection and prediction of heading date in perennial ryegrass. Fè D; Cericola F; Byrne S; Lenk I; Ashraf BH; Pedersen MG; Roulund N; Asp T; Janss L; Jensen CS; Jensen J BMC Genomics; 2015 Nov; 16():921. PubMed ID: 26559662 [TBL] [Abstract][Full Text] [Related]
13. Leveraging spatiotemporal genomic breeding value estimates of dry matter yield and herbage quality in ryegrass via random regression models. Bornhofen E; Fè D; Lenk I; Greve M; Didion T; Jensen CS; Asp T; Janss L Plant Genome; 2022 Dec; 15(4):e20255. PubMed ID: 36193572 [TBL] [Abstract][Full Text] [Related]
14. High-throughput estimation of allele frequencies using combined pooled-population sequencing and haplotype-based data processing. Schneider M; Shrestha A; Ballvora A; Léon J Plant Methods; 2022 Mar; 18(1):34. PubMed ID: 35313910 [TBL] [Abstract][Full Text] [Related]
15. Construction of relatedness matrices in autopolyploid populations using low-depth high-throughput sequencing data. Bilton TP; Sharma SK; Schofield MR; Black MA; Jacobs JME; Bryan GJ; Dodds KG Theor Appl Genet; 2024 Mar; 137(3):64. PubMed ID: 38430392 [TBL] [Abstract][Full Text] [Related]
16. Genomic Predictive Ability for Foliar Nutritive Traits in Perennial Ryegrass. Arojju SK; Cao M; Zulfi Jahufer MZ; Barrett BA; Faville MJ G3 (Bethesda); 2020 Feb; 10(2):695-708. PubMed ID: 31792009 [TBL] [Abstract][Full Text] [Related]
18. Improving genomic predictions by correction of genotypes from genotyping by sequencing in livestock populations. Wang X; Lund MS; Ma P; Janss L; Kadarmideen HN; Su G J Anim Sci Biotechnol; 2019; 10():8. PubMed ID: 30719286 [TBL] [Abstract][Full Text] [Related]
19. The impact of reducing the frequency of animals genotyped at higher density on imputation and prediction accuracies using ssGBLUP1. Sollero BP; Howard JT; Spangler ML J Anim Sci; 2019 Jul; 97(7):2780-2792. PubMed ID: 31115442 [TBL] [Abstract][Full Text] [Related]
20. The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Aliloo H; Mrode R; Okeyo AM; Ni G; Goddard ME; Gibson JP J Dairy Sci; 2018 Oct; 101(10):9108-9127. PubMed ID: 30077450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]