BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29619079)

  • 1. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.
    Xu YP; Duan PG; Wang F; Guan QQ
    Biotechnol Biofuels; 2018; 11():83. PubMed ID: 29619079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.
    Duan P; Wang B; Xu Y
    Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.
    Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA
    Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upgrading of crude algal bio-oil in supercritical water.
    Duan P; Savage PE
    Bioresour Technol; 2011 Jan; 102(2):1899-906. PubMed ID: 20801646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study.
    Wang F; Tian Y; Zhang CC; Xu YP; Duan PG
    Sci Total Environ; 2018 Sep; 636():953-962. PubMed ID: 29729513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions.
    Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V
    J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor.
    Cheng F; Jarvis JM; Yu J; Jena U; Nirmalakhandan N; Schaub TM; Brewer CE
    Bioresour Technol; 2019 Dec; 294():122184. PubMed ID: 31683452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of poultry wastes into energy feedstocks.
    Kantarli IC; Kabadayi A; Ucar S; Yanik J
    Waste Manag; 2016 Oct; 56():530-9. PubMed ID: 27440220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.
    Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M
    Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies.
    Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A
    Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction of Scenedesmus obliquus microalgae.
    Kohansal K; Tavasoli A; Bozorg A
    Bioresour Technol; 2019 Apr; 277():136-147. PubMed ID: 30665087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data on characterization of crude bio-oils, gaseous products, and process water produced from hydrothermal liquefaction of eight different algae.
    Yang SK; Xu YP; Duan PG
    Data Brief; 2018 Aug; 19():1257-1265. PubMed ID: 30229005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies.
    Arun J; Varshini P; Prithvinath PK; Priyadarshini V; Gopinath KP
    Bioresour Technol; 2018 Aug; 261():182-187. PubMed ID: 29660659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment.
    Goswami G; Makut BB; Das D
    Sci Rep; 2019 Oct; 9(1):15016. PubMed ID: 31628372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties.
    Shakya R; Adhikari S; Mahadevan R; Shanmugam SR; Nam H; Hassan EB; Dempster TA
    Bioresour Technol; 2017 Nov; 243():1112-1120. PubMed ID: 28764118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae.
    Cui Z; Cheng F; Jarvis JM; Brewer CE; Jena U
    Bioresour Technol; 2020 Aug; 310():123454. PubMed ID: 32388353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Utilizing Wastewaters for Large-Scale Microalgal Cultivation and Biofuel Productions Using Hydrothermal Liquefaction Technique: A Comprehensive Review.
    Bagchi SK; Patnaik R; Prasad R
    Front Bioeng Biotechnol; 2021; 9():651138. PubMed ID: 34869245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental studies of hydrothermal liquefaction of kitchen waste with H
    Wang L; Chi Y; Shu D; Weiss-Hortala E; Nzihou A; Choi S
    Waste Manag Res; 2021 Jan; 39(1):165-173. PubMed ID: 32951533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.