BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29619087)

  • 41. Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis, and improves cell wall digestibility in switchgrass.
    Li Y; Xiong W; He F; Qi T; Sun Z; Liu Y; Bai S; Wang H; Wu Z; Fu C
    J Exp Bot; 2022 Jun; 73(12):4157-4169. PubMed ID: 35383829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silencing
    Mazarei M; Baxter HL; Srivastava A; Li G; Xie H; Dumitrache A; Rodriguez M; Natzke JM; Zhang JY; Turner GB; Sykes RW; Davis MF; Udvardi MK; Wang ZY; Davison BH; Blancaflor EB; Tang Y; Stewart CN
    Front Plant Sci; 2020; 11():843. PubMed ID: 32636863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum.
    Faraji M; Fonseca LL; Escamilla-Treviño L; Dixon RA; Voit EO
    Biotechnol Biofuels; 2015; 8():151. PubMed ID: 26388938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards uncovering the roles of switchgrass peroxidases in plant processes.
    Saathoff AJ; Donze T; Palmer NA; Bradshaw J; Heng-Moss T; Twigg P; Tobias CM; Lagrimini M; Sarath G
    Front Plant Sci; 2013; 4():202. PubMed ID: 23802005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass.
    Zhao K; Bartley LE
    BMC Plant Biol; 2014 May; 14():135. PubMed ID: 24885077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.
    Virlouvet L; Ding Y; Fujii H; Avramova Z; Fromm M
    Plant J; 2014 Jul; 79(1):150-61. PubMed ID: 24805058
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis.
    Liu N; Avramova Z
    Epigenetics Chromatin; 2016; 9():8. PubMed ID: 26918031
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum.
    Yang J; Worley E; Ma Q; Li J; Torres-Jerez I; Li G; Zhao PX; Xu Y; Tang Y; Udvardi M
    New Phytol; 2016 Jul; 211(1):75-89. PubMed ID: 26935010
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional Analysis of Cellulose Synthase
    Mazarei M; Baxter HL; Li M; Biswal AK; Kim K; Meng X; Pu Y; Wuddineh WA; Zhang JY; Turner GB; Sykes RW; Davis MF; Udvardi MK; Wang ZY; Mohnen D; Ragauskas AJ; Labbé N; Stewart CN
    Front Plant Sci; 2018; 9():1114. PubMed ID: 30127793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.
    Kwit C; Stewart CN
    Ecol Appl; 2012 Jan; 22(1):3-7. PubMed ID: 22471071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A genomics approach to deciphering lignin biosynthesis in switchgrass.
    Shen H; Mazarei M; Hisano H; Escamilla-Trevino L; Fu C; Pu Y; Rudis MR; Tang Y; Xiao X; Jackson L; Li G; Hernandez T; Chen F; Ragauskas AJ; Stewart CN; Wang ZY; Dixon RA
    Plant Cell; 2013 Nov; 25(11):4342-61. PubMed ID: 24285795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings.
    Ye Z; Sangireddy S; Okekeogbu I; Zhou S; Yu CL; Hui D; Howe KJ; Fish T; Thannhauser TW
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27490537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative transcriptome study of switchgrass (
    Chen P; Chen J; Sun M; Yan H; Feng G; Wu B; Zhang X; Wang X; Huang L
    Biotechnol Biofuels; 2020; 13():170. PubMed ID: 33072185
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic Reconfiguration of Switchgrass Proteomes in Response to Rust (
    Palmer NA; Alvarez S; Naldrett MJ; Muhle A; Sarath G; Edmé SJ; Tatineni S; Mitchell RB; Yuen G
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heteroexpression of
    Liu Y; Yan J; Wang K; Li D; Han Y; Zhang W
    Biotechnol Biofuels; 2020; 13():56. PubMed ID: 32206089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Improved Leaf Protoplast System for Highly Efficient Transient Expression in Switchgrass (Panicum virgatum L.).
    Lin CY; Wei H; Donohoe BS; Tucker MP; Himmel ME
    Methods Mol Biol; 2020; 2096():61-79. PubMed ID: 32720147
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proline Biosynthesis Enzyme Genes Confer Salt Tolerance to Switchgrass (
    Guan C; Cui X; Liu HY; Li X; Li MQ; Zhang YW
    Front Plant Sci; 2020; 11():46. PubMed ID: 32117384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance.
    Wuddineh WA; Mazarei M; Zhang J; Poovaiah CR; Mann DG; Ziebell A; Sykes RW; Davis MF; Udvardi MK; Stewart CN
    Plant Biotechnol J; 2015 Jun; 13(5):636-47. PubMed ID: 25400275
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production.
    Xu B; Escamilla-Treviño LL; Sathitsuksanoh N; Shen Z; Shen H; Zhang YH; Dixon RA; Zhao B
    New Phytol; 2011 Nov; 192(3):611-25. PubMed ID: 21790609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosynthesis and Emission of Stress-Induced Volatile Terpenes in Roots and Leaves of Switchgrass (
    Muchlinski A; Chen X; Lovell JT; Köllner TG; Pelot KA; Zerbe P; Ruggiero M; Callaway L; Laliberte S; Chen F; Tholl D
    Front Plant Sci; 2019; 10():1144. PubMed ID: 31608090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.