These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29619296)

  • 1. First-Principle-Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries.
    Sandonas LM; Sevinçli H; Gutierrez R; Cuniberti G
    Adv Sci (Weinh); 2018 Feb; 5(2):1700365. PubMed ID: 29619296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phononic Thermal Transport along Graphene Grain Boundaries: A Hidden Vulnerability.
    Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2021 Sep; 8(18):e2101624. PubMed ID: 34291609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon-Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS
    Lin C; Chen X; Zou X
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25547-25555. PubMed ID: 31273972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal Phonon Scattering in Graphene Grain Boundaries.
    Yasaei P; Fathizadeh A; Hantehzadeh R; Majee AK; El-Ghandour A; Estrada D; Foster C; Aksamija Z; Khalili-Araghi F; Salehi-Khojin A
    Nano Lett; 2015 Jul; 15(7):4532-40. PubMed ID: 26035002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green's Function Techniques.
    Medrano Sandonas L; Gutierrez R; Pecchia A; Croy A; Cuniberti G
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorene grain boundary effect on phonon transport and phononic applications.
    Wang X; Wang Q; Liu X; Huang Z; Liu X
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35325884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Localized Phonons at Al
    Yan J; Shi R; Wei J; Li Y; Qi R; Wu M; Li X; Feng B; Gao P; Shibata N; Ikuhara Y
    Nano Lett; 2024 Mar; 24(11):3323-3330. PubMed ID: 38466652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS
    Xu K; Liang T; Zhang Z; Cao X; Han M; Wei N; Wu J
    Nanoscale; 2022 Jan; 14(4):1241-1249. PubMed ID: 34994370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-Resolution Mapping of Localized Phonon Modes at Grain Boundaries.
    Haas B; Boland TM; Elsässer C; Singh AK; March K; Barthel J; Koch CT; Rez P
    Nano Lett; 2023 Jul; 23(13):5975-5980. PubMed ID: 37341711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport.
    Zhang N; Zhou B; Li D; Qi D; Wu Y; Zheng H; Yang B
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the polarized quantum phonon transmission in graphene nanoribbons.
    Scuracchio P; Dobry A; Costamagna S; Peeters FM
    Nanotechnology; 2015 Jul; 26(30):305401. PubMed ID: 26150409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio thermal transport properties of nanostructures from density functional perturbation theory.
    Calzolari A; Jayasekera T; Kim KW; Nardelli MB
    J Phys Condens Matter; 2012 Dec; 24(49):492204. PubMed ID: 23164749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Divacancy and Extended Line Defects on the Thermal Transport Properties of Graphene Nanoribbons.
    Luo M; Li BL; Li D
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31766154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio quantum transport in polycrystalline graphene.
    Dechamps S; Nguyen VH; Charlier JC
    Nanoscale; 2018 Apr; 10(16):7759-7768. PubMed ID: 29658557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon stability and phonon transport of graphene-like borophene.
    Yin Y; Li D; Hu Y; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Jul; 31(31):315709. PubMed ID: 32203947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-induced conductance modulation in graphene grain boundary.
    Kumar SB; Guo J
    Nano Lett; 2012 Mar; 12(3):1362-6. PubMed ID: 22324382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drastic effects of vacancies on phonon lifetime and thermal conductivity in graphene.
    Bouzerar G; Thébaud S; Pecorario S; Adessi C
    J Phys Condens Matter; 2020 Jul; 32(29):295702. PubMed ID: 32319427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study of wrinkle propagation in graphene with flower-like grain boundaries.
    Zhao Z; Wang Y; Wang C
    Phys Chem Chem Phys; 2021 May; 23(20):11917-11930. PubMed ID: 33998625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.